Nothing
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.9515
Code
print(mzoe)
Output
[1] 0.2
Code
print(mae)
Output
[1] 0.2
Code
print(table(true, pred))
Output
pred
true 1 2 3 4 5
1 9 1 0 0 0
2 1 32 1 0 0
3 0 7 12 4 0
4 0 0 2 16 2
5 0 0 0 2 11
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.9333
Code
print(mzoe)
Output
[1] 0.28
Code
print(mae)
Output
[1] 0.28
Code
print(table(true, pred))
Output
pred
true 1 2 3 4 5
1 11 6 0 0 0
2 2 26 3 0 0
3 0 9 14 2 0
4 0 0 5 9 0
5 0 0 0 1 12
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.8741
Code
print(mzoe)
Output
[1] 0.32
Code
print(mae)
Output
[1] 0.32
Code
print(table(true, pred))
Output
pred
true 1 2 3 4
1 6 4 0 0
2 0 33 1 0
3 0 4 9 10
4 0 0 0 20
5 0 0 0 13
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.8392
Code
print(mzoe)
Output
[1] 0.48
Code
print(mae)
Output
[1] 0.5
Code
print(table(true, pred))
Output
pred
true 1 2 3 4
1 4 13 0 0
2 1 27 1 2
3 0 8 8 9
4 0 0 1 13
5 0 0 0 13
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.8753
Code
print(mzoe)
Output
[1] 0.32
Code
print(mae)
Output
[1] 0.32
Code
print(table(true, pred))
Output
pred
true 1 2 3 4
1 6 4 0 0
2 0 33 1 0
3 0 5 9 9
4 0 0 0 20
5 0 0 0 13
Code
print(roc$auc)
Output
Multi-class area under the curve: 0.8426
Code
print(mzoe)
Output
[1] 0.48
Code
print(mae)
Output
[1] 0.5
Code
print(table(true, pred))
Output
pred
true 1 2 3 4
1 4 13 0 0
2 2 26 1 2
3 0 9 9 7
4 0 0 1 13
5 0 0 0 13
omisvm()
value returns make senseCode
models <- list(xy = .run_omisvm(df1, weights = NULL), formula = omisvm(mi(
bag_label, bag_name) ~ V1 + V2, data = df1, weights = NULL), mi_df = omisvm(
as_mi_df(df1, instance_label = NULL)), `no-scale` = .run_omisvm(df1, weights = NULL,
control = list(scale = FALSE))) %>% suppressWarnings() %>% suppressMessages()
print(lapply(models, names))
Output
$xy
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "h" "s" "kernel" "repr_inst" "x_scale"
$formula
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "h" "s" "kernel" "repr_inst" "x_scale"
[11] "formula" "bag_name"
$mi_df
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "h" "s" "kernel" "repr_inst" "x_scale"
[11] "bag_name"
$`no-scale`
[1] "gurobi_fit" "call_type" "features" "levels" "cost"
[6] "h" "s" "kernel" "repr_inst"
Code
print(models)
Output
$xy
An misvm object called with misvm.default
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
h: 1
s: 2
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 2
$formula
An misvm object called with omisvm.formula
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
h: 1
s: 2
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:2] "V1" "V2"
Number of iterations: 1
$mi_df
An misvm object called with omisvm.mi_df
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
h: 1
s: 2
scale: TRUE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 2
$`no-scale`
An misvm object called with misvm.default
Parameters:
method: qp-heuristic
kernel: linear
cost: 1
h: 1
s: 2
scale: FALSE
weights: FALSE
Model info:
Levels of `y`: chr [1:3] "1" "2" "3"
Features: chr [1:5] "V1" "V2" "V3" "V4" "V5"
Number of iterations: 3
omisvm()
resultsCode
with(df1_test, suppressWarnings({
pred <- predict(mdl2, df1_test, type = "raw")$.pred
pROC::auc(classify_bags(bag_label, bag_name), classify_bags(pred, bag_name))
}))
Message <simpleMessage>
Setting levels: control = 1, case = 2
Setting direction: controls < cases
Output
Area under the curve: 0.9335
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.