Nothing
Code
auc1 <- with(mil_df_test, pROC::auc(response = classify_bags(bag_label,
bag_name), predictor = classify_bags(pred1$.pred, bag_name)))
Message <simpleMessage>
Setting levels: control = 0, case = 1
Setting direction: controls < cases
Code
auc2 <- with(mil_df_test, pROC::auc(response = classify_bags(bag_label,
bag_name), predictor = classify_bags(pred2$.pred, bag_name)))
Message <simpleMessage>
Setting levels: control = 0, case = 1
Setting direction: controls < cases
Code
auc1
Output
Area under the curve: 1
Code
auc2
Output
Area under the curve: 1
Code
eps <- 0.05
smm()
value returns make senseCode
models <- list(xy = smm(x, y, instances), formula = smm(y ~ x1 + x2 + x3, data = df),
mildata = smm(mil_df), `no-scale-xy` = smm(x, y, instances, control = list(
scale = FALSE)), `no-scale-mildata` = smm(mil_df, control = list(scale = FALSE)),
`no-weights-xy` = smm(x, y, instances, weights = FALSE), `no-weights-mildata` = smm(
mil_df, weights = FALSE)) %>% suppressWarnings() %>% suppressMessages()
print(lapply(models, names))
Output
$xy
[1] "ksvm_fit" "call_type" "x" "features" "levels"
[6] "cost" "sigma" "weights" "kernel" "kernel_param"
[11] "x_scale"
$formula
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "x_scale" "formula"
[13] "instance_name"
$mildata
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "x_scale" "bag_name"
[13] "instance_name"
$`no-scale-xy`
[1] "ksvm_fit" "call_type" "x" "features" "levels"
[6] "cost" "sigma" "weights" "kernel" "kernel_param"
$`no-scale-mildata`
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "weights"
[9] "kernel" "kernel_param" "bag_name" "instance_name"
$`no-weights-xy`
[1] "ksvm_fit" "call_type" "x" "features" "levels"
[6] "cost" "sigma" "kernel" "kernel_param" "x_scale"
$`no-weights-mildata`
[1] "ksvm_fit" "call_type" "x" "features"
[5] "levels" "cost" "sigma" "kernel"
[9] "kernel_param" "x_scale" "bag_name" "instance_name"
Code
print(models)
Output
$xy
A smm object called with smm.default
Parameters:
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('-1' = 1, '1' = 1)
Model info:
Features: chr [1:3] "x1" "x2" "x3"
$formula
A smm object called with smm.formula
Parameters:
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: ('-1' = 1, '1' = 1)
Model info:
Features: chr [1:3] "x1" "x2" "x3"
$mildata
A smm object called with smm.mild_df
Parameters:
kernel: kme w/ radial (sigma = 0.1)
cost: 1
scale: TRUE
weights: ('0' = 1.5, '1' = 1)
Model info:
Features: chr [1:10] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" ...
$`no-scale-xy`
A smm object called with smm.default
Parameters:
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: FALSE
weights: ('-1' = 1, '1' = 1)
Model info:
Features: chr [1:3] "x1" "x2" "x3"
$`no-scale-mildata`
A smm object called with smm.mild_df
Parameters:
kernel: kme w/ radial (sigma = 0.1)
cost: 1
scale: FALSE
weights: ('0' = 1.5, '1' = 1)
Model info:
Features: chr [1:10] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" ...
$`no-weights-xy`
A smm object called with smm.default
Parameters:
kernel: kme w/ radial (sigma = 0.3333333)
cost: 1
scale: TRUE
weights: FALSE
Model info:
Features: chr [1:3] "x1" "x2" "x3"
$`no-weights-mildata`
A smm object called with smm.mild_df
Parameters:
kernel: kme w/ radial (sigma = 0.1)
cost: 1
scale: TRUE
weights: FALSE
Model info:
Features: chr [1:10] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" ...
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.