Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(missCompare)
## ----eval = FALSE-------------------------------------------------------------
# install.packages("missCompare")
# library(missCompare)
## ----eval = TRUE--------------------------------------------------------------
data("clindata_miss")
## ----eval = TRUE--------------------------------------------------------------
cleaned <- missCompare::clean(clindata_miss,
var_removal_threshold = 0.5,
ind_removal_threshold = 0.8,
missingness_coding = -9)
## ----eval = TRUE--------------------------------------------------------------
metadata <- missCompare::get_data(cleaned,
matrixplot_sort = T,
plot_transform = T)
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
metadata$NA_Correlation_plot
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
metadata$min_PDM_thresholds
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
metadata$Matrix_plot
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
metadata$Cluster_plot
## ----eval = FALSE-------------------------------------------------------------
# simulated <- missCompare::simulate(rownum = metadata$Rows,
# colnum = metadata$Columns,
# cormat = metadata$Corr_matrix,
# meanval = 0,
# sdval = 1)
## ----eval = FALSE-------------------------------------------------------------
# missCompare::MCAR(simulated$Simulated_matrix,
# MD_pattern = metadata$MD_Pattern,
# NA_fraction = metadata$Fraction_missingness,
# min_PDM = 10)
## ----eval = FALSE-------------------------------------------------------------
# missCompare::MAR(simulated$Simulated_matrix,
# MD_pattern = metadata$MD_Pattern,
# NA_fraction = metadata$Fraction_missingness,
# min_PDM = 10)
#
# missCompare::MNAR(simulated$Simulated_matrix,
# MD_pattern = metadata$MD_Pattern,
# NA_fraction = metadata$Fraction_missingness,
# min_PDM = 10)
## ----eval = FALSE-------------------------------------------------------------
# missCompare::MAP(simulated$Simulated_matrix,
# MD_pattern = metadata$MD_Pattern,
# NA_fraction = metadata$Fraction_missingness,
# min_PDM = 10,
# assumed_pattern = c(rep("MCAR", 10), "MNAR"))
## ----eval = FALSE-------------------------------------------------------------
# missCompare::impute_simulated(rownum = metadata$Rows,
# colnum = metadata$Columns,
# cormat = metadata$Corr_matrix,
# MD_pattern = metadata$MD_Pattern,
# NA_fraction = metadata$Fraction_missingness,
# min_PDM = 10,
# n.iter = 50,
# assumed_pattern = NA)
## ----eval = FALSE-------------------------------------------------------------
# imputed <- missCompare::impute_data(clindata_miss,
# scale = F,
# n.iter = 10,
# sel_method = c(14)) # 14 is the code for missForest
## ----eval = TRUE, message = FALSE---------------------------------------------
imputed <- missCompare::impute_data(cleaned,
scale = T,
n.iter = 10,
sel_method = c(3)) # 3 is the code for mean imputation
## ----eval = TRUE, warning = FALSE---------------------------------------------
diag <- missCompare::post_imp_diag(cleaned,
imputed$mean_imputation[[1]],
scale=T,
n.boot = 5)
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
diag$Histograms$SBP
## ----eval = TRUE, echo = FALSE, message=FALSE, warning = FALSE, results='hide'----
imputed <- missCompare::impute_data(cleaned,
scale = T,
n.iter = 1,
sel_method = c(13)) # 13 is the code for Amelia II
diag <- missCompare::post_imp_diag(cleaned,
imputed$ameliaII_imputation[[1]],
scale=T,
n.boot = 5)
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
head(diag$Statistics, 2)
## ----echo = FALSE, fig.width=6, fig.height=3----------------------------------
diag$Correlation_plot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.