run_hurdle | R Documentation |
This function fits a JAGS using the jags
funciton and obtain posterior inferences.
run_hurdle(type, dist_e, dist_c, inits, se, sc, sde, sdc, ppc)
type |
Type of structural value mechanism assumed. Choices are Structural Completely At Random (SCAR), and Structural At Random (SAR). |
dist_e |
distribution assumed for the effects. Current available chocies are: Normal ('norm'), Beta ('beta'), Gamma ('gamma'), Exponential ('exp'), Weibull ('weibull'), Logistic ('logis'), Poisson ('pois'), Negative Binomial ('nbinom') or Bernoulli ('bern') |
dist_c |
distribution assumed for the costs. Current available chocies are: Normal ('norm'), Gamma ('gamma') or LogNormal ('lnorm'). |
inits |
a list with elements equal to the number of chains selected; each element of the list is itself a list of starting values for the BUGS model, or a function creating (possibly random) initial values. If inits is NULL, JAGS will generate initial values for parameters |
se |
Structural value to be found in the effect data. If set to |
sc |
Structural value to be found in the cost data. If set to |
sde |
hyper-prior value for the standard deviation of the distribution of the structural effects. The default value is
|
sdc |
hyper-prior value for the standard deviation of the distribution of the structural costs. The default value is
|
ppc |
Logical. If |
#Internal function only
#No examples
#
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.