| robust.lmer | R Documentation |
This function estimates a multilevel and linear mixed-effects model based on
a robust estimation method using the rlmer() function from the
robustlmm package that down-weights observations depending on robustness
weights computed by robustification of the scoring equations and an application
of the Design Adaptive Scale (DAS) approach.
robust.lmer(model, method = c("DAStau", "DASvar"),setting = c("RSEn", "RSEa"),
digits = 2, p.digits = 3, write = NULL, append = TRUE, check = TRUE,
output = TRUE)
model |
a fitted model of class |
method |
a character string indicating the method used for estimating
theta and sigma, i.e., |
setting |
a character string indicating the setting for the parameters
used for computing the robustness weights, i.e., |
digits |
an integer value indicating the number of decimal places to be used. |
p.digits |
an integer value indicating the number of decimal places to be used for displaying p-value. |
write |
a character string naming a file for writing the output into
either a text file with file extension |
append |
logical: if |
check |
logical: if |
output |
logical: if |
The function
rlmer from the robustlmm package is specified much like the
function lmer from the lme4 package, i.e., a formula object
and data frame is specified as the first and second argument. However, the
robust.lmer function requires a fitted "lmerMod" or
"lmerModLmerTest" that is used to re-estimate the model using the
robust estimation method. Note that the function rlmer provides
the additional arguments rho.e, rho.b, rho.sigma.e,
rho.sigma.b, rel.tol, max.iter, verbose,
doFit, init, and initTheta that are not supported by
the robust.lmer function. See help page of the rlmer() function
in the R package robustlmm for more details.
The function rlmer from the robustlmm package does not provide
any degrees of freedom or significance values. When specifying a "lmerModLmerTest"
object for the argument model, the robust.lmer function uses the
Satterthwaite or Kenward-Roger degrees of freedom from the "lmerModLmerTest"
object to compute significance values for the regression coefficients based on
parameter estimates and standard error of the robust multilevel mixed-effects
(see Sleegers et al. (2021).
Returns an object of class misty.object, which is a list with following
entries:
call |
function call |
type |
type of analysis |
model |
object returned from the |
args |
specification of function arguments |
result |
list with results, i.e., |
Takuya Yanagida takuya.yanagida@univie.ac.at
Koller, M. (2016). robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models. Journal of Statistical Software, 75(6), 1–24. https://doi.org/10.18637/jss.v075.i06
coeff.robust, summa
## Not run:
# Load lme4, lmerTest, and misty package
misty::libraries(lme4, lmerTest, misty)
# Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")
#----------------------------------------------------------------------------
# Multilevel and Linear Mixed-Effects Model
# Cluster-mean centering, center() from the misty package
Demo.twolevel <- center(Demo.twolevel, x2, type = "CWC", cluster = "cluster")
# Grand-mean centering, center() from the misty package
Demo.twolevel <- center(Demo.twolevel, w1, type = "CGM", cluster = "cluster")
# Estimate two-level mixed-effects model
mod.lmer2 <- lmer(y1 ~ x2.c + w1.c + x2.c:w1.c + (1 + x2.c | cluster), data = Demo.twolevel)
# Example 1a: Default setting
mod.lmer2r <- robust.lmer(mod.lmer2)
# Example 1b: Extract robustness weights
mod.lmer2r$result$weight$iresid
mod.lmer2r$result$weight$iranef
#----------------------------------------------------------------------------
# Write Results
# Example 2a: Write results into a text file
robust.lmer(mod.lmer2, write = "Robust_lmer.txt", output = FALSE)
# Example 2b: Write results into a Excel file
robust.lmer(mod.lmer2, write = "Robust_lmer.xlsx", output = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.