fitBayes | R Documentation |
Let {{y}}_1,{{y}}_2, \cdots,{{y}}_n are n realizations form SαS distribution with parameters α, σ, and μ. Herein, we estimate parameters of symmetric univariate stable distribution within a Bayesian framework. We consider a uniform distribution for prior of tail thickness, that is α \sim U(0,2). The normal and inverse gamma conjugate priors are designated for μ and σ^2 with density functions given, respectively, by
π(μ)=\frac{1}{√{2π}σ_{0}}\exp\Bigl\{-\frac{1}{2}\Bigl(\frac{μ-μ_0}{σ_0}\Bigr)^{2}\Bigr\},
and
π(δ)= δ_{0}^{γ_{0}}δ^{-γ_0-1}\exp\Bigl\{-\frac{δ_0}{δ}\Bigr\},
where μ_0 \in R, σ_0>0, δ=σ^2, δ_0>0, and γ_0>0.
fitBayes(y, mu0, sigma0, gamma0, delta0, epsilon)
y |
vector of realizations that following SαS distribution. |
mu0 |
the location hyperparameter corresponding to π(μ). |
sigma0 |
the standard deviation hyperparameter corresponding to π(μ). |
gamma0 |
the shape hyperparameter corresponding to π(δ). |
delta0 |
the rate hyperparameter corresponding to π(δ). |
epsilon |
a positive small constant playing the role of threshold for stopping sampler. |
Estimated tail thickness, location, and scale parameters, number of iterations to attain convergence, the log-likelihood value across iterations, the Bayesian information criterion (BIC), and the Akaike information criterion (AIC).
Mahdi Teimouri
n <- 100 alpha <- 1.4 mu <- 0 sigma <- 1 y <- rnorm(n) fitBayes(y, mu0 = 0, sigma0 = 0.2, gamma0 = 10e-5, delta0 = 10e-5, epsilon = 0.005)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.