stoch | R Documentation |
Suppose {\boldsymbol{Y}}_1,{\boldsymbol{Y}}_2, \cdots,{\boldsymbol{Y}}_n are realizations following d-dimensional skewed sub-Gaussian stable distribution. Herein, we estimate the tail thickness parameter 0<α ≤q 2 when \boldsymbol{μ} (location vector in {{{R}}}^{d}, \boldsymbol{λ} (skewness vector in {{{R}}}^{d}), and Σ (positive definite symmetric dispersion matrix are assumed to be known.
stoch(Y, alpha0, Mu0, Sigma0, Lambda0)
Y |
a vector (or an n\times d matrix) at which the density function is approximated. |
alpha0 |
initial value for the tail thickness parameter. |
Mu0 |
a vector giving the initial value for the location parameter. |
Sigma0 |
a positive definite symmetric matrix specifying the initial value for the dispersion matrix. |
Lambda0 |
a vector giving the initial value for the skewness parameter. |
Here, we assume that parameters {\boldsymbol{μ}}, {\boldsymbol{λ}}, and Σ are known and only the tail thickness parameter needs to be estimated.
Estimated tail thickness parameter α, of the skewed sub-Gaussian stable distribution.
Mahdi Teimouri
n <- 100 alpha <- 1.4 Mu <- rep(0, 2) Sigma <- diag(2) Lambda <- rep(2, 2) Y <- rssg(n, alpha, Mu, Sigma, Lambda) stoch(Y, alpha, Mu, Sigma, Lambda)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.