mixpoissonreg: Mixed Poisson Regression for Overdispersed Count Data

Fits mixed Poisson regression models (Poisson-Inverse Gaussian or Negative-Binomial) on data sets with response variables being count data. The models can have varying precision parameter, where a linear regression structure (through a link function) is assumed to hold on the precision parameter. The Expectation-Maximization algorithm for both these models (Poisson Inverse Gaussian and Negative Binomial) is an important contribution of this package. Another important feature of this package is the set of functions to perform global and local influence analysis. See Barreto-Souza and Simas (2016) <doi:10.1007/s11222-015-9601-6> for further details.

Package details

AuthorAlexandre B. Simas [aut, cre] (<https://orcid.org/0000-0003-2562-2829>), Wagner Barreto-Souza [aut] (<https://orcid.org/0000-0003-0831-7881>)
MaintainerAlexandre B. Simas <alexandre.impa@gmail.com>
LicenseGPL-2
Version1.0.0
URL https://github.com/vpnsctl/mixpoissonreg/ https://vpnsctl.github.io/mixpoissonreg/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("mixpoissonreg")

Try the mixpoissonreg package in your browser

Any scripts or data that you put into this service are public.

mixpoissonreg documentation built on March 11, 2021, 1:07 a.m.