Nothing
test_that("covlmc predict returns the same value(s) for zero depth model", {
for (k in 1:2) {
data_set <- build_data_set(100, seed = k)
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
model <- covlmc(data_set$x, data_set$covariate, alpha = 0.0001)
## make sure we are in the constant model case
expect_equal(context_number(model), 1L)
model_pred <- predict(model, data_set$x, data_set$covariate)
expect_equal(
model_pred,
rep(model_pred[1], length(data_set$x) + 1)
)
model_pred <- predict(model, data_set$x, data_set$covariate, type = "probs")
dimnames(model_pred) <- NULL
expect_equal(
model_pred,
matrix(model_pred[1, ],
nrow = length(data_set$x) + 1, ncol = ncol(model_pred),
byrow = TRUE
)
)
}
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
data_set <- build_data_set_3_model(250, seed = k, alpha = 1e-9)
model <- data_set$model
## make sure we are in the constant model case
if (context_number(model) != 1L) {
co <- cutoff(model)
model <- prune(model, min(co))
}
expect_equal(context_number(model), 1L)
model_pred <- predict(model, data_set$dts, data_set$cov)
expect_equal(
model_pred,
rep(model_pred[1], length(data_set$dts) + 1)
)
model_pred <- predict(model, data_set$dts, data_set$cov, type = "probs")
dimnames(model_pred) <- NULL
expect_equal(
model_pred,
matrix(model_pred[1, ],
nrow = length(data_set$dts) + 1, ncol = ncol(model_pred),
byrow = TRUE
)
)
}
}
})
test_that("covlmc predict returns deterministic results", {
for (k in 1:2) {
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
data_set <- build_data_set_3_model(250, seed = 0, alpha = 0.1)
model <- data_set$model
## make sure we are in the constant model case
model_pred <- predict(model, data_set$dts, data_set$cov, type = "probs")
model_pred_2 <- predict(model, data_set$dts, data_set$cov, type = "probs")
expect_equal(
model_pred,
model_pred_2
)
}
}
})
test_that("covlmc predict returns probabilities", {
for (k in 1:2) {
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
data_set <- build_data_set_3_model(250, seed = 0, alpha = 0.1)
model <- data_set$model
## make sure we are in the constant model case
model_pred <- predict(model, data_set$dts, data_set$cov, type = "probs")
expect_probabilities(model_pred)
data_set <- build_degenerate_elec_model()
model <- data_set$model
## make sure we are in the constant model case
model_pred <- predict(model, data_set$dts, data_set$cov, type = "probs")
expect_probabilities(model_pred)
}
}
})
test_that("the semantics of final_pred is respected", {
pc_week_15_16 <- powerconsumption[powerconsumption$week %in% c(15, 16), ]
elec <- pc_week_15_16$active_power
elec_dts <- cut(elec, breaks = c(0, 0.4, 2, 8), labels = c("low", "typical", "high"))
elec_cov <- data.frame(day = (pc_week_15_16$hour >= 7 & pc_week_15_16$hour <= 18))
for (engine in c("glm", "multinom")) {
withr::local_options(mixvlmc.predictive = engine)
elec_tune <- tune_covlmc(elec_dts, elec_cov, min_size = 5)
elec_model <- as_covlmc(elec_tune)
pred_w_final <- predict(elec_model, elec_dts[1:500], elec_cov[1:500, , drop = FALSE],
final_pred = TRUE
)
pred_wo_final <- predict(elec_model, elec_dts[1:500], elec_cov[1:500, , drop = FALSE],
final_pred = FALSE
)
expect_length(
pred_w_final,
500 + 1
)
expect_length(
pred_wo_final,
500
)
expect_identical(
pred_wo_final,
pred_w_final[-length(pred_w_final)]
)
probs_pred_w_final <- predict(elec_model, elec_dts[1:500], elec_cov[1:500, , drop = FALSE],
type = "probs", final_pred = TRUE
)
probs_pred_wo_final <- predict(elec_model, elec_dts[1:500], elec_cov[1:500, , drop = FALSE],
type = "probs", final_pred = FALSE
)
expect_equal(
nrow(probs_pred_w_final),
500 + 1
)
expect_equal(
nrow(probs_pred_wo_final),
500
)
expect_identical(
probs_pred_wo_final,
probs_pred_w_final[-length(pred_w_final), , drop = FALSE]
)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.