Nothing
test_that("prepare_covariate is called with the proper parameters", {
skip_on_ci()
skip_on_cran()
d_model <- create_demo_covlmc()
nx <- to_dts(d_model$dts, d_model$model$vals)
x <- nx$ix + 1
ctx <- c()
all_true <- TRUE
for (i in 1:length(x)) {
subtree <- match_context_co(d_model$model, ctx)
if (subtree$merged) {
local_model <- subtree$tree$merged_model
} else if (is.null(subtree$tree[["model"]])) {
local_model <- subtree$tree$extended_model
} else {
local_model <- subtree$tree$model
}
mm <- prepare_covariate(d_model$cov, i - subtree$depth - 1,
d = local_model$hsize,
from = subtree$depth - local_model$hsize
)
## the context of i has been found. It's length is subtree$depth. We expect
## the covariates to be in positions i-local_model$hsize to i-1
if (local_model$hsize == 0) {
all_true <- ncol(mm) == 0L
} else {
expected_cov <- d_model$cov[(i - local_model$hsize):(i - 1), , drop = FALSE]
expected_cov <- rev(expected_cov[[1]])
the_mm <- unlist(mm)
names(the_mm) <- NULL
all_true <- identical(the_mm, expected_cov)
}
if (!all_true) {
break
}
if (i <= length(x)) {
j <- max(i - depth(d_model$model) + 1, 1)
ctx <- x[i:j]
}
}
expect_true(all_true)
})
test_that("prepare_covariate is called with the proper parameters (real data)", {
skip_on_ci()
skip_on_cran()
pc <- powerconsumption[powerconsumption$week == 5, ]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5, alpha = 0.1)
nx <- to_dts(dts, m_cov$vals)
x <- nx$ix + 1
ctx <- c()
all_true <- TRUE
for (i in 1:length(x)) {
subtree <- match_context_co(m_cov, ctx)
if (subtree$merged) {
local_model <- subtree$tree$merged_model
} else if (is.null(subtree$tree[["model"]])) {
local_model <- subtree$tree$extended_model
} else {
local_model <- subtree$tree$model
}
mm <- prepare_covariate(dts_cov, i - subtree$depth - 1,
d = local_model$hsize,
from = subtree$depth - local_model$hsize
)
## the context of i has been found. It's length is subtree$depth. We expect
## the covariates to be in positions i-local_model$hsize to i-1
if (local_model$hsize == 0) {
all_true <- ncol(mm) == 0L
} else {
expected_cov <- dts_cov[(i - local_model$hsize):(i - 1), , drop = FALSE]
expected_cov <- rev(expected_cov[[1]])
the_mm <- unlist(mm)
names(the_mm) <- NULL
all_true <- identical(the_mm, expected_cov)
}
if (!all_true) {
break
}
if (i <= length(x)) {
j <- max(i - depth(m_cov) + 1, 1)
ctx <- x[i:j]
}
}
expect_true(all_true)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.