tests/testthat/test-vlmc_predict.R

test_that("vlmc predict returns the same value for zero depth model", {
  withr::local_seed(0)
  for (k in 1:5) {
    data_set <- sample(1:(k + 1), 50, replace = TRUE)
    for (backend in c("R", "C++")) {
      withr::local_options("mixvlmc.backend" = backend)
      d_vlmc <- vlmc(data_set, alpha = 1e-5)
      ## make sure we are in the constant model case
      expect_equal(context_number(d_vlmc), 1L)
      expect_equal(
        predict(d_vlmc, sample(1:(k + 1), 50, replace = TRUE)),
        rep(as.numeric(which.max(table(data_set))), 51)
      )
    }
  }
})

test_that("vlmc predict returns deterministic results", {
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    withr::local_seed(0)
    data_set <- sample(c("A", "B", "C"), 500, replace = TRUE)
    d_vlmc <- vlmc(data_set)
    new_data <- sample(c("A", "B", "C"), 500, replace = TRUE)
    first_try <- predict(d_vlmc, new_data)
    second_try <- predict(d_vlmc, new_data)
    expect_identical(first_try, second_try)
  }
})


test_that("vlmc predict handles correctly edge cases", {
  pc <- powerconsumption[powerconsumption$week == 5, ]
  dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    model <- vlmc(dts, min_size = 5)
    for (fp in c(TRUE, FALSE)) {
      ec_predict <- predict(model, dts[0], final_pred = fp)
      expect_length(ec_predict, as.integer(fp))
      expect_type(ec_predict, typeof(dts))
      expect_s3_class(ec_predict, class(dts))
      expect_identical(levels(ec_predict), levels(dts))
      prob_ec_predict <- predict(model, dts[0], final_pred = fp, type = "probs")
      expect_equal(nrow(prob_ec_predict), as.integer(fp))
      expect_equal(ncol(prob_ec_predict), length(levels(dts)))
      expect_type(prob_ec_predict, "double")
      expect_identical(class(prob_ec_predict), c("matrix", "array"))
      expect_equal(colnames(prob_ec_predict), as.character(levels(dts)))
    }
  }
})

test_that("vlmc predict returns probabilities", {
  for (k in 2:5) {
    data_set <- build_markov_chain(1000, k, seed = k)
    for (backend in c("R", "C++")) {
      withr::local_options("mixvlmc.backend" = backend)
      x_vlmc <- vlmc(data_set$x)
      preds <- predict(x_vlmc, data_set$x[1:500], type = "probs")
      expect_equal(rowSums(preds), rep(1, nrow(preds)))
    }
  }
})

test_that("vlmc predict returns good values and number of predictions for non-zero depth model", {
  withr::local_seed(0)
  data_set <- sample(c("A", "B", "C"), 500, replace = TRUE)
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    d_vlmc <- vlmc(data_set)
    expect_equal(predict(d_vlmc, c("A", "B", "B", "A", "A")), c("A", "A", "B", "B", "A", "A"))
  }
})

test_that("vlmc predict returns the same size matrix for different type for non-zero depth model", {
  withr::local_seed(0)
  data_set <- sample(c("A", "B", "C"), 500, replace = TRUE)
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    d_vlmc <- vlmc(data_set)
    expect_length(predict(d_vlmc, c("A", "B", "B", "A")), 5L)
    expect_equal(dim(predict(d_vlmc, c("A", "B", "B", "A"), type = "probs")), c(5, 3))
  }
})

test_that("vlmc predict detects unadapted values in input", {
  withr::local_seed(0)
  data_set <- sample(c("A", "B", "C"), 500, replace = TRUE)
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    d_vlmc <- vlmc(data_set)
    expect_error(predict(d_vlmc, c("A", "B", "B", "D")))
    expect_error(predict(d_vlmc, c("A", "B", "B", "2")))
    expect_error(predict(d_vlmc, newdata = NULL))
  }
})

test_that("the semantics of final_pred is respected", {
  withr::local_seed(0)
  data_set <- sample(c("A", "B", "C"), 500, replace = TRUE)
  for (backend in c("R", "C++")) {
    withr::local_options("mixvlmc.backend" = backend)
    d_vlmc <- vlmc(data_set, alpha = 0.1)
    for (k in 1:10) {
      new_dts <- sample(c("A", "B", "C"),
        100 + sample(50:100, 1),
        replace = TRUE
      )
      pred_w_final <- predict(d_vlmc, new_dts, final_pred = TRUE)
      pred_wo_final <- predict(d_vlmc, new_dts, final_pred = FALSE)
      expect_length(
        pred_w_final,
        length(new_dts) + 1
      )
      expect_length(
        pred_wo_final,
        length(new_dts)
      )
      expect_identical(
        pred_wo_final,
        pred_w_final[-length(pred_w_final)]
      )
      probs_pred_w_final <- predict(d_vlmc, new_dts, type = "probs", final_pred = TRUE)
      probs_pred_wo_final <- predict(d_vlmc, new_dts, type = "probs", final_pred = FALSE)
      expect_equal(
        nrow(probs_pred_w_final),
        length(new_dts) + 1
      )
      expect_equal(
        nrow(probs_pred_wo_final),
        length(new_dts)
      )
      expect_identical(
        probs_pred_wo_final,
        probs_pred_w_final[-length(pred_w_final), , drop = FALSE]
      )
    }
  }
})

Try the mixvlmc package in your browser

Any scripts or data that you put into this service are public.

mixvlmc documentation built on June 8, 2025, 12:35 p.m.