View source: R/mkdeFunctions.R
computeSizeMKDE | R Documentation |
For 2D MKDEs, this function computes the area. For a 2.5D MKDE it computes the area based on the cell areas computed from an elevation raster. For a 3D MKDE, it computes the volume.
computeSizeMKDE(mkde.obj, prob)
mkde.obj |
MKDE list object with density estimate calculated. |
prob |
Probabilities for the desired contours. |
For a 2D or 2.5D MKDE list object, areas within the contours specified by quant are calculated. For a 3D MKDE, the volumes within the contours are calculated.
A vector with the areas or volumes is returned.
Jeff A. Tracey, PhD
USGS Western Ecological Research Center, San Diego Field Station
jatracey@usgs.gov
James Sheppard, PhD
San Diego Zoo Institute for Conservation Research
jsheppard@sandiegozoo.org
library(terra)
data(condor)
condor <- condor[1:20,] # simply to make example run more quickly
mv.dat <- initializeMovementData(condor$time, condor$x, condor$y,
z.obs=condor$z, sig2obs=25.0, sig2obs.z=81.0, t.max=65.0)
fpath <- system.file("extdata", "condordem120.RDS", package="mkde")
condordem120 <- terra::readRDS(fpath)
cell.sz <- mean(res(condordem120))
ext <- ext(condordem120)
nx <- ncol(condordem120)
ny <- nrow(condordem120)
mkde.obj <- initializeMKDE3D(ext$xmin, cell.sz, nx, ext$ymin, cell.sz,
ny, min(values(condordem120), na.rm=TRUE), cell.sz, 25)
# note: we use a raster coarse integration time step so the
# example runs faster
dens.res <- initializeDensity(mkde.obj, mv.dat, integration.step=10.0)
mkde.obj <- dens.res$mkde.obj
mv.dat <- dens.res$move.dat
my.quantiles <- c(0.95, 0.75, 0.50)
res <- computeContourValues(mkde.obj, my.quantiles)
res$volume <- computeSizeMKDE(mkde.obj, my.quantiles)
print(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.