Description Usage Arguments Value Examples
View source: R/partitions_iter.R
Iterative stratification
Implemented from the algorithm explained in: Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2011. On the stratification of multi-label data. In Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III (ECML PKDD'11), Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis (Eds.), Vol. Part III. Springer-Verlag, Berlin, Heidelberg, 145-158.
1 2 | iterative.stratification.holdout(mld, p = 60, seed = 10,
get.indices = FALSE)
|
mld |
The |
p |
The percentage of instances to be selected for the training partition |
seed |
The seed to initialize the random number generator. By default is 10. Change it if you want to obtain partitions containing different samples, for instance to use a 2x5 fcv strategy |
get.indices |
A logical value indicating whether to return lists of indices or lists of |
An mldr.folds
object. This is a list containing k elements, one for each fold. Each element is made up
of two mldr objects, called train
and test
1 2 3 4 5 6 7 8 |
Attaching package: 'mldr.datasets'
The following object is masked from 'package:stats':
density
num.attributes num.instances num.inputs num.labels num.labelsets
1 78 414 72 6 26
num.single.labelsets max.frequency cardinality density meanIR scumble
1 4 54 1.874396 0.3123994 1.478652 0.01117508
scumble.cv tcs
1 1.255687 9.326522
num.attributes num.instances num.inputs num.labels num.labelsets
1 78 179 72 6 24
num.single.labelsets max.frequency cardinality density meanIR scumble
1 9 31 1.854749 0.3091248 1.476775 0.01034334
scumble.cv tcs
1 1.286273 9.246479
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.