Description Usage Arguments Value Examples
View source: R/partitions_iter.R
Iterative stratification
Implemented from the algorithm explained in: Konstantinos Sechidis, Grigorios Tsoumakas, and Ioannis Vlahavas. 2011. On the stratification of multi-label data. In Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III (ECML PKDD'11), Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis (Eds.), Vol. Part III. Springer-Verlag, Berlin, Heidelberg, 145-158.
1 2  | iterative.stratification.holdout(mld, p = 60, seed = 10,
  get.indices = FALSE)
 | 
mld | 
 The   | 
p | 
 The percentage of instances to be selected for the training partition  | 
seed | 
 The seed to initialize the random number generator. By default is 10. Change it if you want to obtain partitions containing different samples, for instance to use a 2x5 fcv strategy  | 
get.indices | 
 A logical value indicating whether to return lists of indices or lists of   | 
An mldr.folds object. This is a list containing k elements, one for each fold. Each element is made up
of two mldr objects, called train and test
1 2 3 4 5 6 7 8  | 
Attaching package: 'mldr.datasets'
The following object is masked from 'package:stats':
    density
  num.attributes num.instances num.inputs num.labels num.labelsets
1             78           414         72          6            26
  num.single.labelsets max.frequency cardinality   density   meanIR    scumble
1                    4            54    1.874396 0.3123994 1.478652 0.01117508
  scumble.cv      tcs
1   1.255687 9.326522
  num.attributes num.instances num.inputs num.labels num.labelsets
1             78           179         72          6            24
  num.single.labelsets max.frequency cardinality   density   meanIR    scumble
1                    9            31    1.854749 0.3091248 1.476775 0.01034334
  scumble.cv      tcs
1   1.286273 9.246479
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.