Description Usage Arguments Value Author(s) See Also Examples
Compares the empirical power of unit-root tests using simulation. Various non-normal distributions may be selected.
1 2 3 |
phi |
AR(1) parameter or phi=1 if null is true |
n |
length of series |
NSIM |
Number of simulations |
tests |
available tests include: DF for Dickey-Fuller, MLEp for exact MLE using pivotal, MLEn - exact MLEn using normalized, MCT using Monte-Carlo test |
noiseDist |
distribution of innovations: "normal" for Gaussian; "t" for t-distribution; "stable" for stable distribution; "GARCH11" for GARCH |
df |
df for t-distribution |
ALPHA |
shape parameter of stable distribution in (0,2] |
BETA |
skewness parameter of stable in [-1,1] |
alpha |
GARCH(1,1) first parameter |
beta |
GARCH(1,1) second parameter |
List with the following components:
power |
vector with estimated power for selected tests |
phi |
AR(1) parameter value |
NSIM |
Number of simulations used |
MOE |
margin of error for level 0.95 c.i. |
A.I. McLeod
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.