Description Usage Arguments Value References Examples
It quantifies events based on testing scores using the Adjusted Classify
and Count (ACC) method. ACC is an extension of CC, applying a correction
rate based on the true and false positive rates (tpr
and fpr
).
1 | ACC(test, TprFpr, thr=0.5)
|
test |
a numeric |
TprFpr |
a |
thr |
threshold value according to the |
A numeric vector containing the class distribution estimated from the test set.
Forman, G. (2006, August). Quantifying trends accurately despite classifier error and class imbalance. In ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 157-166).<doi.org/10.1145/1150402.1150423>.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | library(randomForest)
library(caret)
cv <- createFolds(aeAegypti$class, 3)
tr <- aeAegypti[cv$Fold1,]
validation <- aeAegypti[cv$Fold2,]
ts <- aeAegypti[cv$Fold3,]
# -- Getting a sample from ts with 80 positive and 20 negative instances --
ts_sample <- rbind(ts[sample(which(ts$class==1),80),],
ts[sample(which(ts$class==2),20),])
scorer <- randomForest(class~., data=tr, ntree=500)
scores <- cbind(predict(scorer, validation, type = c("prob")), validation$class)
TprFpr <- getTPRandFPRbyThreshold(scores)
test.scores <- predict(scorer, ts_sample, type = c("prob"))
ACC(test = test.scores[,1], TprFpr = TprFpr)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.