Nothing
#' @export
makeRLearner.cluster.EM = function() {
makeRLearnerCluster(
cl = "cluster.EM",
package = "RWeka",
par.set = makeParamSet(
makeIntegerLearnerParam(id = "I", default = 100L, lower = 1L),
makeNumericLearnerParam(id = "ll-cv", default = 1e-6, lower = 1e-6),
makeNumericLearnerParam(id = "ll-iter", default = 1e-6, lower = 1e-6),
makeNumericLearnerParam(id = "M", default = 1e-6, lower = 1e-6),
makeIntegerLearnerParam(id = "max", default = -1L, lower = -1L),
makeIntegerLearnerParam(id = "N", default = -1L, lower = -1L),
makeIntegerLearnerParam(id = "num-slots", default = 1L, lower = 1L),
makeIntegerLearnerParam(id = "S", default = 100L, lower = 0L),
makeIntegerLearnerParam(id = "X", default = 10L, lower = 1L),
makeIntegerLearnerParam(id = "K", default = 10L, lower = 1L),
makeLogicalLearnerParam(id = "V", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "output-debug-info", default = FALSE, tunable = FALSE)
),
properties = "numerics",
name = "Expectation-Maximization Clustering",
short.name = "em",
callees = c("make_Weka_clusterer", "Weka_control")
)
}
#' @export
trainLearner.cluster.EM = function(.learner, .task, .subset, .weights = NULL, ...) {
ctrl = RWeka::Weka_control(...)
RWeka::make_Weka_clusterer("weka/clusterers/EM")(getTaskData(.task, .subset), control = ctrl)
}
#' @export
predictLearner.cluster.EM = function(.learner, .model, .newdata, ...) {
# EM returns cluster indices (i.e. starting from 0, which some tools don't like
as.integer(predict(.model$learner.model, .newdata, ...)) + 1L
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.