Nothing
#' @export
makeRLearner.regr.RRF = function() {
makeRLearnerRegr(
cl = "regr.RRF",
package = "RRF",
par.set = makeParamSet(
makeIntegerLearnerParam(id = "ntree", lower = 1L, default = 500L),
# FIXME: Add default value when data dependent defaults are implemented:
# mtry = floor(sqrt(#independent vars))
makeIntegerLearnerParam(id = "mtry", lower = 1L),
makeIntegerLearnerParam(id = "nodesize", lower = 1L),
makeLogicalLearnerParam(id = "replace", default = TRUE),
makeIntegerLearnerParam(id = "flagReg", default = 1L, lower = 0),
makeNumericLearnerParam(id = "coefReg", default = 0.8,
requires = quote(flagReg == 1L)),
makeIntegerVectorLearnerParam(id = "feaIni", lower = 0, upper = Inf,
requires = quote(flagReg == 1L)),
makeLogicalLearnerParam(id = "corr.bias", default = FALSE),
makeIntegerLearnerParam(id = "maxnodes", lower = 1L),
makeLogicalLearnerParam(id = "importance", default = FALSE),
makeLogicalLearnerParam(id = "localImp", default = FALSE),
makeIntegerLearnerParam(id = "nPerm", lower = 1L, default = 1L, tunable = FALSE),
makeLogicalLearnerParam(id = "proximity", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "oob.prox", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "do.trace", default = FALSE, tunable = FALSE),
makeLogicalLearnerParam(id = "keep.inbag", default = FALSE, tunable = FALSE),
makeUntypedLearnerParam(id = "strata"),
makeIntegerVectorLearnerParam(id = "sampsize", lower = 0)
),
properties = c("numerics", "factors", "ordered", "featimp"),
name = "Regularized Random Forests",
short.name = "RRF",
note = "",
callees = "RRF"
)
}
#' @export
trainLearner.regr.RRF = function(.learner, .task, .subset, .weights, ...) {
RRF::RRF(formula = getTaskFormula(.task), data = getTaskData(.task, .subset),
keep.forest = TRUE, ...)
}
#' @export
predictLearner.regr.RRF = function(.learner, .model, .newdata, ...) {
p = predict(object = .model$learner.model, newdata = .newdata, ...)
return(p)
}
#' @export
getFeatureImportanceLearner.regr.RRF = function(.learner, .model, ...) {
getFeatureImportanceLearner.classif.RRF(.learner, .model, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.