Nothing
#' @title Tuner Using the Hyperband Algorithm
#'
#' @include OptimizerBatchHyperband.R
#' @name mlr_tuners_hyperband
#' @templateVar id hyperband
#'
#' @inherit mlr_optimizers_hyperband description
#' @inheritSection mlr_optimizers_hyperband Resources
#' @template section_dictionary_tuners
#' @inheritSection mlr_optimizers_hyperband Parameters
#' @inheritSection mlr_optimizers_hyperband Archive
#' @template section_subsample_budget
#' @template section_custom_sampler
#' @template section_progress_bars
#'
#' @section Parallelization:
#' This hyperband implementation evaluates hyperparameter configurations of equal budget across brackets in one batch.
#' For example, all configurations in stage 1 of bracket 3 and stage 0 of bracket 2 in one batch.
#' To select a parallel backend, use the `plan()` function of the \CRANpkg{future} package.
#'
#' @template section_logging
#'
#' @source
#' `r format_bib("li_2018")`
#'
#' @export
#' @template example_tuner
TunerBatchHyperband = R6Class("TunerBatchHyperband",
inherit = TunerBatchFromOptimizerBatch,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
super$initialize(
optimizer = OptimizerBatchHyperband$new(),
man = "mlr3hyperband::mlr_tuners_hyperband"
)
}
)
)
#' @include aaa.R
tuners[["hyperband"]] = TunerBatchHyperband
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.