Nothing
#' @import data.table
#' @import checkmate
#' @import mlr3misc
#' @import mlr3
#' @import sf
#' @importFrom R6 R6Class is.R6
#' @importFrom stats complete.cases
#' @importFrom utils getFromNamespace data
#'
#' @section Learn mlr3:
#' * Book on mlr3: \url{https://mlr3book.mlr-org.com}
#' * Use cases and examples gallery: \url{https://mlr3gallery.mlr-org.com}
#' * Cheat Sheets: \url{https://github.com/mlr-org/mlr3cheatsheets}
#'
#' @section mlr3 extensions:
#' * Preprocessing and machine learning pipelines: \CRANpkg{mlr3pipelines}
#' * Analysis of benchmark experiments: \CRANpkg{mlr3benchmark}
#' * More classification and regression tasks: \CRANpkg{mlr3data}
#' * Connector to [OpenML](https://www.openml.org): \CRANpkg{mlr3oml}
#' * Solid selection of good classification and regression learners: \CRANpkg{mlr3learners}
#' * Even more learners: \url{https://github.com/mlr-org/mlr3extralearners}
#' * Tuning of hyperparameters: \CRANpkg{mlr3tuning}
#' * Hyperband tuner: \CRANpkg{mlr3hyperband}
#' * Visualizations for many \pkg{mlr3} objects: \CRANpkg{mlr3viz}
#' * Survival analysis and probabilistic regression: \CRANpkg{mlr3proba}
#' * Cluster analysis: \CRANpkg{mlr3cluster}
#' * Feature selection filters: \CRANpkg{mlr3filters}
#' * Feature selection wrappers: \CRANpkg{mlr3fselect}
#' * Interface to real (out-of-memory) data bases: \CRANpkg{mlr3db}
#' * Performance measures as plain functions: \CRANpkg{mlr3measures}
#'
#' @section Suggested packages:
#' * Parallelization framework: \CRANpkg{future}
#' * Progress bars: \CRANpkg{progressr}
#' * Encapsulated evaluation: \CRANpkg{evaluate}, \CRANpkg{callr} (external process)
#'
#' @section Package Options:
#' * `"mlr3.debug"`: If set to `TRUE`, parallelization via \CRANpkg{future} is
#' disabled to simplify debugging and provide more concise tracebacks. Note that
#' results computed with debug mode enabled use a different seeding mechanism
#' and are not reproducible.
#' * `"mlr3.allow_utf8_names"`: If set to `TRUE`, checks on the feature names
#' are relaxed, allowing non-ascii characters in column names. This is an
#' experimental and temporal option to pave the way for text analysis, and will
#' likely be removed in a future version of the package. analysis.
#'
#' @references
#' `r tools::toRd(citation("mlr3spatial"))`
"_PACKAGE"
.onLoad = function(libname, pkgname) {
# nocov start
# reflections
x = getFromNamespace("mlr_reflections", ns = "mlr3")
x$task_types = x$task_types[!c("regr_st", "classif_st")]
x$task_types = setkeyv(rbind(x$task_types, rowwise_table(
~type, ~package, ~task, ~learner, ~prediction, ~prediction_data, ~measure,
"regr_st", "mlr3spatial", "TaskRegrST", "LearnerRegr", "PredictionRegr", "PredictionDataRegr", "MeasureRegr",
"classif_st", "mlr3spatial", "TaskClassifST", "LearnerClassif", "PredictionClassif", "PredictionDataClassif", "MeasureClassif"
)), "type")
x$task_col_roles$classif_st = c(x$task_col_roles$classif, c("coordinate", "space", "time"))
x$task_col_roles$regr_st = c(x$task_col_roles$regr, c("coordinate", "space", "time"))
x$task_col_roles$unsupervised = x$task_col_roles$regr
x$task_properties$classif_st = x$task_properties$classif
x$task_properties$regr_st = x$task_properties$regr
x$default_measures$classif_st = "classif.ce"
x$default_measures$regr_st = "regr.mse"
# task
x = getFromNamespace("mlr_tasks", ns = "mlr3")
x$add("leipzig", load_task_leipzig)
# setup logger
assign("lg", lgr::get_logger("mlr3"), envir = parent.env(environment()))
if (Sys.getenv("IN_PKGDOWN") == "true") {
lg$set_threshold("warn")
}
} # nocov end
.onUnload = function(libpaths) { # nolint
mlr3::mlr_tasks$remove("leipzig")
}
leanify_package() # nocov
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.