TorchCallback | R Documentation |
This wraps a CallbackSet
and annotates it with metadata, most importantly a ParamSet
.
The callback is created for the given parameter values by calling the $generate()
method.
This class is usually used to configure the callback of a torch learner, e.g. when constructing
a learner of in a ModelDescriptor
.
For a list of available callbacks, see mlr3torch_callbacks
.
To conveniently retrieve a TorchCallback
, use t_clbk()
.
Defined by the constructor argument param_set
.
If no parameter set is provided during construction, the parameter set is constructed by creating a parameter
for each argument of the wrapped loss function, where the parametes are then of type ParamUty
.
mlr3torch::TorchDescriptor
-> TorchCallback
new()
Creates a new instance of this R6 class.
TorchCallback$new( callback_generator, param_set = NULL, id = NULL, label = NULL, packages = NULL, man = NULL, additional_args = NULL )
callback_generator
(R6ClassGenerator
)
The class generator for the callback that is being wrapped.
param_set
(ParamSet
or NULL
)
The parameter set. If NULL
(default) it is inferred from callback_generator
.
id
(character(1)
)
The id for of the new object.
label
(character(1)
)
Label for the new instance.
packages
(character()
)
The R packages this object depends on.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
additional_args
(any
)
Additional arguments if necessary. For learning rate schedulers, this is the torch::LRScheduler.
clone()
The objects of this class are cloneable with this method.
TorchCallback$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Callback:
as_torch_callback()
,
as_torch_callbacks()
,
callback_set()
,
mlr3torch_callbacks
,
mlr_callback_set
,
mlr_callback_set.checkpoint
,
mlr_callback_set.progress
,
mlr_callback_set.tb
,
mlr_callback_set.unfreeze
,
mlr_context_torch
,
t_clbk()
,
torch_callback()
Other Torch Descriptor:
TorchDescriptor
,
TorchLoss
,
TorchOptimizer
,
as_torch_callbacks()
,
as_torch_loss()
,
as_torch_optimizer()
,
mlr3torch_losses
,
mlr3torch_optimizers
,
t_clbk()
,
t_loss()
,
t_opt()
# Create a new torch callback from an existing callback set
torch_callback = TorchCallback$new(CallbackSetCheckpoint)
# The parameters are inferred
torch_callback$param_set
# Retrieve a torch callback from the dictionary
torch_callback = t_clbk("checkpoint",
path = tempfile(), freq = 1
)
torch_callback
torch_callback$label
torch_callback$id
# open the help page of the wrapped callback set
# torch_callback$help()
# Create the callback set
callback = torch_callback$generate()
callback
# is the same as
CallbackSetCheckpoint$new(
path = tempfile(), freq = 1
)
# Use in a learner
learner = lrn("regr.mlp", callbacks = t_clbk("checkpoint"))
# the parameters of the callback are added to the learner's parameter set
learner$param_set
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.