TorchLoss | R Documentation |
This wraps a torch::nn_loss
and annotates it with metadata, most importantly a ParamSet
.
The loss function is created for the given parameter values by calling the $generate()
method.
This class is usually used to configure the loss function of a torch learner, e.g.
when construcing a learner or in a ModelDescriptor
.
For a list of available losses, see mlr3torch_losses
.
Items from this dictionary can be retrieved using t_loss()
.
Defined by the constructor argument param_set
.
If no parameter set is provided during construction, the parameter set is constructed by creating a parameter
for each argument of the wrapped loss function, where the parametes are then of type ParamUty
.
mlr3torch::TorchDescriptor
-> TorchLoss
task_types
(character()
)
The task types this loss supports.
new()
Creates a new instance of this R6 class.
TorchLoss$new( torch_loss, task_types = NULL, param_set = NULL, id = NULL, label = NULL, packages = NULL, man = NULL )
torch_loss
(nn_loss
)
The loss module.
task_types
(character()
)
The task types supported by this loss.
param_set
(ParamSet
or NULL
)
The parameter set. If NULL
(default) it is inferred from torch_loss
.
id
(character(1)
)
The id for of the new object.
label
(character(1)
)
Label for the new instance.
packages
(character()
)
The R packages this object depends on.
man
(character(1)
)
String in the format [pkg]::[topic]
pointing to a manual page for this object.
The referenced help package can be opened via method $help()
.
print()
Prints the object
TorchLoss$print(...)
...
any
clone()
The objects of this class are cloneable with this method.
TorchLoss$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other Torch Descriptor:
TorchCallback
,
TorchDescriptor
,
TorchOptimizer
,
as_torch_callbacks()
,
as_torch_loss()
,
as_torch_optimizer()
,
mlr3torch_losses
,
mlr3torch_optimizers
,
t_clbk()
,
t_loss()
,
t_opt()
# Create a new torch loss
torch_loss = TorchLoss$new(torch_loss = nn_mse_loss, task_types = "regr")
torch_loss
# the parameters are inferred
torch_loss$param_set
# Retrieve a loss from the dictionary:
torch_loss = t_loss("mse", reduction = "mean")
# is the same as
torch_loss
torch_loss$param_set
torch_loss$label
torch_loss$task_types
torch_loss$id
# Create the loss function
loss_fn = torch_loss$generate()
loss_fn
# Is the same as
nn_mse_loss(reduction = "mean")
# open the help page of the wrapped loss function
# torch_loss$help()
# Use in a learner
learner = lrn("regr.mlp", loss = t_loss("mse"))
# The parameters of the loss are added to the learner's parameter set
learner$param_set
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.