mlr_pipeops_nn_conv3d: 3D Convolution

mlr_pipeops_nn_conv3dR Documentation

3D Convolution

Description

Applies a 3D convolution over an input image composed of several input planes.

nn_module

Calls torch::nn_conv3d() when trained. The paramter in_channels is inferred from the second dimension of the input tensor.

Input and Output Channels

One input channel called "input" and one output channel called "output". For an explanation see PipeOpTorch.

State

The state is the value calculated by the public method ⁠$shapes_out()⁠.

Parameters

  • out_channels :: integer(1)
    Number of channels produced by the convolution.

  • kernel_size :: integer()
    Size of the convolving kernel.

  • stride :: integer()
    Stride of the convolution. The default is 1.

  • padding :: integer()
    ‘dilation * (kernel_size - 1) - padding’ zero-padding will be added to both sides of the input. Default: 0.

  • groups :: integer()
    Number of blocked connections from input channels to output channels. Default: 1

  • bias :: logical(1)
    If ‘TRUE’, adds a learnable bias to the output. Default: ‘TRUE’.

  • dilation :: integer()
    Spacing between kernel elements. Default: 1.

  • padding_mode :: character(1)
    The padding mode. One of "zeros", "reflect", "replicate", or "circular". Default is "zeros".

Super classes

mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> mlr3torch::PipeOpTorchConv -> PipeOpTorchConv3D

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
PipeOpTorchConv3D$new(id = "nn_conv3d", param_vals = list())
Arguments
id

(character(1))
Identifier of the resulting object.

param_vals

(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.


Method clone()

The objects of this class are cloneable with this method.

Usage
PipeOpTorchConv3D$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other PipeOps: mlr_pipeops_nn_adaptive_avg_pool1d, mlr_pipeops_nn_adaptive_avg_pool2d, mlr_pipeops_nn_adaptive_avg_pool3d, mlr_pipeops_nn_avg_pool1d, mlr_pipeops_nn_avg_pool2d, mlr_pipeops_nn_avg_pool3d, mlr_pipeops_nn_batch_norm1d, mlr_pipeops_nn_batch_norm2d, mlr_pipeops_nn_batch_norm3d, mlr_pipeops_nn_block, mlr_pipeops_nn_celu, mlr_pipeops_nn_conv1d, mlr_pipeops_nn_conv2d, mlr_pipeops_nn_conv_transpose1d, mlr_pipeops_nn_conv_transpose2d, mlr_pipeops_nn_conv_transpose3d, mlr_pipeops_nn_dropout, mlr_pipeops_nn_elu, mlr_pipeops_nn_flatten, mlr_pipeops_nn_gelu, mlr_pipeops_nn_glu, mlr_pipeops_nn_hardshrink, mlr_pipeops_nn_hardsigmoid, mlr_pipeops_nn_hardtanh, mlr_pipeops_nn_head, mlr_pipeops_nn_layer_norm, mlr_pipeops_nn_leaky_relu, mlr_pipeops_nn_linear, mlr_pipeops_nn_log_sigmoid, mlr_pipeops_nn_max_pool1d, mlr_pipeops_nn_max_pool2d, mlr_pipeops_nn_max_pool3d, mlr_pipeops_nn_merge, mlr_pipeops_nn_merge_cat, mlr_pipeops_nn_merge_prod, mlr_pipeops_nn_merge_sum, mlr_pipeops_nn_prelu, mlr_pipeops_nn_relu, mlr_pipeops_nn_relu6, mlr_pipeops_nn_reshape, mlr_pipeops_nn_rrelu, mlr_pipeops_nn_selu, mlr_pipeops_nn_sigmoid, mlr_pipeops_nn_softmax, mlr_pipeops_nn_softplus, mlr_pipeops_nn_softshrink, mlr_pipeops_nn_softsign, mlr_pipeops_nn_squeeze, mlr_pipeops_nn_tanh, mlr_pipeops_nn_tanhshrink, mlr_pipeops_nn_threshold, mlr_pipeops_nn_unsqueeze, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_categ, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, mlr_pipeops_torch_loss, mlr_pipeops_torch_model, mlr_pipeops_torch_model_classif, mlr_pipeops_torch_model_regr

Examples


# Construct the PipeOp
pipeop = po("nn_conv3d", kernel_size = 10, out_channels = 1)
pipeop
# The available parameters
pipeop$param_set


mlr3torch documentation built on April 4, 2025, 3:03 a.m.