mlr_pipeops_nn_leaky_relu: Leaky ReLU Activation Function

mlr_pipeops_nn_leaky_reluR Documentation

Leaky ReLU Activation Function

Description

Applies element-wise, LeakyReLU(x) = max(0, x) + negative_slope * min(0, x)

nn_module

Calls torch::nn_leaky_relu() when trained.

Parameters

  • negative_slope :: numeric(1)
    Controls the angle of the negative slope. Default: 1e-2.

  • inplace :: logical(1)
    Can optionally do the operation in-place. Default: ‘FALSE’.

Input and Output Channels

One input channel called "input" and one output channel called "output". For an explanation see PipeOpTorch.

State

The state is the value calculated by the public method ⁠$shapes_out()⁠.

Super classes

mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> PipeOpTorchLeakyReLU

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
PipeOpTorchLeakyReLU$new(id = "nn_leaky_relu", param_vals = list())
Arguments
id

(character(1))
Identifier of the resulting object.

param_vals

(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.


Method clone()

The objects of this class are cloneable with this method.

Usage
PipeOpTorchLeakyReLU$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other PipeOps: mlr_pipeops_nn_adaptive_avg_pool1d, mlr_pipeops_nn_adaptive_avg_pool2d, mlr_pipeops_nn_adaptive_avg_pool3d, mlr_pipeops_nn_avg_pool1d, mlr_pipeops_nn_avg_pool2d, mlr_pipeops_nn_avg_pool3d, mlr_pipeops_nn_batch_norm1d, mlr_pipeops_nn_batch_norm2d, mlr_pipeops_nn_batch_norm3d, mlr_pipeops_nn_block, mlr_pipeops_nn_celu, mlr_pipeops_nn_conv1d, mlr_pipeops_nn_conv2d, mlr_pipeops_nn_conv3d, mlr_pipeops_nn_conv_transpose1d, mlr_pipeops_nn_conv_transpose2d, mlr_pipeops_nn_conv_transpose3d, mlr_pipeops_nn_dropout, mlr_pipeops_nn_elu, mlr_pipeops_nn_flatten, mlr_pipeops_nn_gelu, mlr_pipeops_nn_glu, mlr_pipeops_nn_hardshrink, mlr_pipeops_nn_hardsigmoid, mlr_pipeops_nn_hardtanh, mlr_pipeops_nn_head, mlr_pipeops_nn_layer_norm, mlr_pipeops_nn_linear, mlr_pipeops_nn_log_sigmoid, mlr_pipeops_nn_max_pool1d, mlr_pipeops_nn_max_pool2d, mlr_pipeops_nn_max_pool3d, mlr_pipeops_nn_merge, mlr_pipeops_nn_merge_cat, mlr_pipeops_nn_merge_prod, mlr_pipeops_nn_merge_sum, mlr_pipeops_nn_prelu, mlr_pipeops_nn_relu, mlr_pipeops_nn_relu6, mlr_pipeops_nn_reshape, mlr_pipeops_nn_rrelu, mlr_pipeops_nn_selu, mlr_pipeops_nn_sigmoid, mlr_pipeops_nn_softmax, mlr_pipeops_nn_softplus, mlr_pipeops_nn_softshrink, mlr_pipeops_nn_softsign, mlr_pipeops_nn_squeeze, mlr_pipeops_nn_tanh, mlr_pipeops_nn_tanhshrink, mlr_pipeops_nn_threshold, mlr_pipeops_nn_unsqueeze, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_categ, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, mlr_pipeops_torch_loss, mlr_pipeops_torch_model, mlr_pipeops_torch_model_classif, mlr_pipeops_torch_model_regr

Examples


# Construct the PipeOp
pipeop = po("nn_leaky_relu")
pipeop
# The available parameters
pipeop$param_set


mlr3torch documentation built on April 4, 2025, 3:03 a.m.