mlr_pipeops_nn_prelu: PReLU Activation Function

mlr_pipeops_nn_preluR Documentation

PReLU Activation Function

Description

Applies element-wise the function PReLU(x) = max(0,x) + weight * min(0,x) where weight is a learnable parameter.

nn_module

Calls torch::nn_prelu() when trained.

Parameters

  • num_parameters :: integer(1): Number of a to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1.

  • init :: numeric(1)
    T The initial value of a. Default: 0.25.

Input and Output Channels

One input channel called "input" and one output channel called "output". For an explanation see PipeOpTorch.

State

The state is the value calculated by the public method ⁠$shapes_out()⁠.

Super classes

mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> PipeOpTorchPReLU

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
PipeOpTorchPReLU$new(id = "nn_prelu", param_vals = list())
Arguments
id

(character(1))
Identifier of the resulting object.

param_vals

(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.


Method clone()

The objects of this class are cloneable with this method.

Usage
PipeOpTorchPReLU$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

See Also

Other PipeOps: mlr_pipeops_nn_adaptive_avg_pool1d, mlr_pipeops_nn_adaptive_avg_pool2d, mlr_pipeops_nn_adaptive_avg_pool3d, mlr_pipeops_nn_avg_pool1d, mlr_pipeops_nn_avg_pool2d, mlr_pipeops_nn_avg_pool3d, mlr_pipeops_nn_batch_norm1d, mlr_pipeops_nn_batch_norm2d, mlr_pipeops_nn_batch_norm3d, mlr_pipeops_nn_block, mlr_pipeops_nn_celu, mlr_pipeops_nn_conv1d, mlr_pipeops_nn_conv2d, mlr_pipeops_nn_conv3d, mlr_pipeops_nn_conv_transpose1d, mlr_pipeops_nn_conv_transpose2d, mlr_pipeops_nn_conv_transpose3d, mlr_pipeops_nn_dropout, mlr_pipeops_nn_elu, mlr_pipeops_nn_flatten, mlr_pipeops_nn_gelu, mlr_pipeops_nn_glu, mlr_pipeops_nn_hardshrink, mlr_pipeops_nn_hardsigmoid, mlr_pipeops_nn_hardtanh, mlr_pipeops_nn_head, mlr_pipeops_nn_layer_norm, mlr_pipeops_nn_leaky_relu, mlr_pipeops_nn_linear, mlr_pipeops_nn_log_sigmoid, mlr_pipeops_nn_max_pool1d, mlr_pipeops_nn_max_pool2d, mlr_pipeops_nn_max_pool3d, mlr_pipeops_nn_merge, mlr_pipeops_nn_merge_cat, mlr_pipeops_nn_merge_prod, mlr_pipeops_nn_merge_sum, mlr_pipeops_nn_relu, mlr_pipeops_nn_relu6, mlr_pipeops_nn_reshape, mlr_pipeops_nn_rrelu, mlr_pipeops_nn_selu, mlr_pipeops_nn_sigmoid, mlr_pipeops_nn_softmax, mlr_pipeops_nn_softplus, mlr_pipeops_nn_softshrink, mlr_pipeops_nn_softsign, mlr_pipeops_nn_squeeze, mlr_pipeops_nn_tanh, mlr_pipeops_nn_tanhshrink, mlr_pipeops_nn_threshold, mlr_pipeops_nn_unsqueeze, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_categ, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, mlr_pipeops_torch_loss, mlr_pipeops_torch_model, mlr_pipeops_torch_model_classif, mlr_pipeops_torch_model_regr

Examples


# Construct the PipeOp
pipeop = po("nn_prelu")
pipeop
# The available parameters
pipeop$param_set


mlr3torch documentation built on April 4, 2025, 3:03 a.m.