| mlr_pipeops_nn_tokenizer_num | R Documentation |
Tokenizes numeric features into a dense embedding.
For an input of shape (batch, n_features) the output shape is (batch, n_features, d_token).
Calls nn_tokenizer_num() when trained where the parameter n_features is inferred.
The output shape is (batch, n_features, d_token).
d_token :: integer(1)
The dimension of the embedding.
bias :: logical(1)
Whether to use a bias. Is initialized to TRUE.
initialization :: character(1)
The initialization method for the embedding weights. Possible values are "uniform" (default)
and "normal".
One input channel called "input" and one output channel called "output".
For an explanation see PipeOpTorch.
The state is the value calculated by the public method $shapes_out().
mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> PipeOpTorchTokenizerNum
new()Creates a new instance of this R6 class.
PipeOpTorchTokenizerNum$new(id = "nn_tokenizer_num", param_vals = list())
id(character(1))
Identifier of the resulting object.
param_vals(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would
otherwise be set during construction.
clone()The objects of this class are cloneable with this method.
PipeOpTorchTokenizerNum$clone(deep = FALSE)
deepWhether to make a deep clone.
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d,
mlr_pipeops_nn_adaptive_avg_pool2d,
mlr_pipeops_nn_adaptive_avg_pool3d,
mlr_pipeops_nn_avg_pool1d,
mlr_pipeops_nn_avg_pool2d,
mlr_pipeops_nn_avg_pool3d,
mlr_pipeops_nn_batch_norm1d,
mlr_pipeops_nn_batch_norm2d,
mlr_pipeops_nn_batch_norm3d,
mlr_pipeops_nn_block,
mlr_pipeops_nn_celu,
mlr_pipeops_nn_conv1d,
mlr_pipeops_nn_conv2d,
mlr_pipeops_nn_conv3d,
mlr_pipeops_nn_conv_transpose1d,
mlr_pipeops_nn_conv_transpose2d,
mlr_pipeops_nn_conv_transpose3d,
mlr_pipeops_nn_dropout,
mlr_pipeops_nn_elu,
mlr_pipeops_nn_flatten,
mlr_pipeops_nn_ft_cls,
mlr_pipeops_nn_ft_transformer_block,
mlr_pipeops_nn_geglu,
mlr_pipeops_nn_gelu,
mlr_pipeops_nn_glu,
mlr_pipeops_nn_hardshrink,
mlr_pipeops_nn_hardsigmoid,
mlr_pipeops_nn_hardtanh,
mlr_pipeops_nn_head,
mlr_pipeops_nn_identity,
mlr_pipeops_nn_layer_norm,
mlr_pipeops_nn_leaky_relu,
mlr_pipeops_nn_linear,
mlr_pipeops_nn_log_sigmoid,
mlr_pipeops_nn_max_pool1d,
mlr_pipeops_nn_max_pool2d,
mlr_pipeops_nn_max_pool3d,
mlr_pipeops_nn_merge,
mlr_pipeops_nn_merge_cat,
mlr_pipeops_nn_merge_prod,
mlr_pipeops_nn_merge_sum,
mlr_pipeops_nn_prelu,
mlr_pipeops_nn_reglu,
mlr_pipeops_nn_relu,
mlr_pipeops_nn_relu6,
mlr_pipeops_nn_reshape,
mlr_pipeops_nn_rrelu,
mlr_pipeops_nn_selu,
mlr_pipeops_nn_sigmoid,
mlr_pipeops_nn_softmax,
mlr_pipeops_nn_softplus,
mlr_pipeops_nn_softshrink,
mlr_pipeops_nn_softsign,
mlr_pipeops_nn_squeeze,
mlr_pipeops_nn_tanh,
mlr_pipeops_nn_tanhshrink,
mlr_pipeops_nn_threshold,
mlr_pipeops_nn_tokenizer_categ,
mlr_pipeops_nn_unsqueeze,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_categ,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
mlr_pipeops_torch_loss,
mlr_pipeops_torch_model,
mlr_pipeops_torch_model_classif,
mlr_pipeops_torch_model_regr
# Construct the PipeOp
pipeop = po("nn_tokenizer_num", d_token = 10)
pipeop
# The available parameters
pipeop$param_set
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.