| nn_graph | R Documentation |
Represents a neural network using a Graph that contains mostly PipeOpModules.
nn_graph(graph, shapes_in, output_map = graph$output$name, list_output = FALSE)
graph |
( |
shapes_in |
(named |
output_map |
( |
list_output |
( |
nn_graph
graph :: Graph
The graph (consisting primarily of PipeOpModules) that is wrapped by the network.
input_map :: character()
The names of the input arguments of the network.
shapes_in :: list()
The shapes of the input tensors of the network.
output_map :: character()
Which output elements of the graph are returned by the $forward() method.
list_output :: logical(1)
Whether the output is a list of tensors.
module_list :: nn_module_list
The list of modules in the network.
list_output :: logical(1)
Whether the output is a list of tensors.
Other Graph Network:
ModelDescriptor(),
TorchIngressToken(),
mlr_learners_torch_model,
mlr_pipeops_module,
mlr_pipeops_torch,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_categ,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
model_descriptor_to_learner(),
model_descriptor_to_module(),
model_descriptor_union()
graph = mlr3pipelines::Graph$new()
graph$add_pipeop(po("module_1", module = nn_linear(10, 20)), clone = FALSE)
graph$add_pipeop(po("module_2", module = nn_relu()), clone = FALSE)
graph$add_pipeop(po("module_3", module = nn_linear(20, 1)), clone = FALSE)
graph$add_edge("module_1", "module_2")
graph$add_edge("module_2", "module_3")
network = nn_graph(graph, shapes_in = list(module_1.input = c(NA, 10)))
x = torch_randn(16, 10)
network(module_1.input = x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.