applyCPO | Apply a CPO to Data |
as.list.CPO | Split a Pipeline into Its Constituents |
attachCPO | Attach a CPO to a Learner |
clearRI | Clear Retrafo and Inverter Attributes |
composeCPO | CPO Composition |
covrTraceCPOs | Add 'covr' coverage to CPOs |
CPO | Composable Preprocessing Operators |
cpoApplyFun | Apply a Function Element-Wise |
cpoApplyFunRegrTarget | Transform a Regression Target Variable |
cpoAsNumeric | Convert All Features to Numerics |
cpoCache | Caches the Result of CPO Transformations |
cpoCbind | "cbind" the Result of Multiple CPOs |
cpoCollapseFact | Compine Rare Factors |
CPOConstructor | Constructor for CPO Objects |
cpoDropConstants | Drop Constant or Near-Constant Features |
cpoDropMostlyConstants | Drop Constant or Near-Constant Features |
cpoDummyEncode | CPO Dummy Encoder |
cpoFilterAnova | Filter Features: "anova.test" |
cpoFilterCarscore | Filter Features: "carscore" |
cpoFilterChiSquared | Filter Features: "chi.squared" |
cpoFilterFeatures | Filter Features by Thresholding Filter Values |
cpoFilterGainRatio | Filter Features: "gain.ratio" |
cpoFilterInformationGain | Filter Features: "information.gain" |
cpoFilterKruskal | Filter Features: "kruskal.test" |
cpoFilterLinearCorrelation | Filter Features: "linear.correlation" |
cpoFilterMrmr | Filter Features: "mrmr" |
cpoFilterOneR | Filter Features: "oneR" |
cpoFilterPermutationImportance | Filter Features: "permutation.importance" |
cpoFilterRankCorrelation | Filter Features: "rank.correlation" |
cpoFilterRelief | Filter Features: "relief" |
cpoFilterRfCImportance | Filter Features: "cforest.importance" |
cpoFilterRfImportance | Filter Features: "randomForest.importance" |
cpoFilterRfSRCImportance | Filter Features: "randomForestSRC.rfsrc" |
cpoFilterRfSRCMinDepth | Filter Features: "randomForestSRC.var.select" |
cpoFilterSymmetricalUncertainty | Filter Features: "symmetrical.uncertainty" |
cpoFilterUnivariate | Filter Features: "univariate.model.score" |
cpoFilterVariance | Filter Features: "variance" |
cpoFixFactors | Clean Up Factorial Features |
cpoIca | Construct a CPO for ICA Preprocessing |
cpoImpactEncodeClassif | Impact Encoding |
cpoImpactEncodeRegr | Impact Encoding |
cpoImpute | Impute and Re-Impute Data |
cpoImputeConstant | Perform Imputation with Constant Value |
cpoImputeHist | Perform Imputation with Random Values |
cpoImputeLearner | Perform Imputation with an 'mlr' 'Learner' |
cpoImputeMax | Perform Imputation with Multiple of Minimum |
cpoImputeMean | Perform Imputation with Mean Value |
cpoImputeMedian | Perform Imputation with Median Value |
cpoImputeMin | Perform Imputation with Multiple of Minimum |
cpoImputeMode | Perform Imputation with Mode Value |
cpoImputeNormal | Perform Imputation with Normally Distributed Random Values |
cpoImputeUniform | Perform Imputation with Uniformly Random Values |
CPOLearner | CPO Learner Object |
cpoLogTrafoRegr | Log-Transform a Regression Target Variable. |
cpoMakeCols | Create Columns from Expressions |
cpoMissingIndicators | Convert Data into Factors Indicating Missing Data |
cpoModelMatrix | Create a "Model Matrix" from the Data Given a Formula |
cpoOversample | Over- or Undersample Binary Classification Tasks |
cpoPca | Construct a CPO for PCA Preprocessing |
cpoProbEncode | Probability Encoding |
cpoQuantileBinNumerics | Split Numeric Features into Quantile Bins |
cpoRegrResiduals | Train a Model on a Task and Return the Residual Task |
cpoResponseFromSE | Use the "se" 'predict.type' for "response" Prediction |
cpoSample | Sample Data from a Task |
cpoScale | Construct a CPO for Scaling / Centering |
cpoScaleMaxAbs | Max Abs Scaling CPO |
cpoScaleRange | Range Scaling CPO |
cpoSelect | Drop All Columns Except Certain Selected Ones from Data |
cpoSmote | Perform SMOTE Oversampling for Binary Classification |
cpoSpatialSign | Scale Rows to Unit Length |
cpoTemplate | Dummy Function for Documentation Purposes |
CPOTrained | Get the Retransformation or Inversion Function from a... |
cpoTransformParams | Transform CPO Hyperparameters |
cpoWrap | CPO Wrapper |
discrete | defined to avoid problems with the static type checker |
funct | defined to avoid problems with the static type checker |
getCPOAffect | Get the Selection Arguments for Affected CPOs |
getCPOClass | Get the CPO Class |
getCPOConstructor | Get the CPOConstructor Used to Create a CPO Object |
getCPOId | Get the ID of a CPO Object |
getCPOName | Get the CPO Object's Name |
getCPOOperatingType | Determine the Operating Type of the CPO |
getCPOPredictType | Get the CPO 'predict.type' |
getCPOProperties | Get the Properties of the Given CPO Object |
getCPOTrainedCapability | Get the CPOTrained's Capabilities |
getCPOTrainedCPO | Get CPO Used to Train a Retrafo / Inverter |
getCPOTrainedState | Get the Internal State of a CPORetrafo Object |
getLearnerBare | Get the Learner with the CPOs Removed |
getLearnerCPO | Get the CPO Associated with a Learner |
grapes-greater-than-greater-than-grapes | CPO Composition / Attachment / Application Operator |
identicalCPO | Check Whether Two CPO are Fundamentally the Same |
internal-grapes-greater-than-greater-than-grapes | Internally Used '%>>%' Operators |
invert | Invert Target Preprocessing |
is.inverter | Check CPOInverter |
is.nullcpo | Check for NULLCPO |
is.retrafo | Check CPORetrafo |
listCPO | List all Built-in CPOs |
makeCPO | Create a Custom CPO Constructor |
makeCPOCase | Build Data-Dependent CPOs |
makeCPOMultiplex | CPO Multiplexer |
makeCPOTrainedFromState | Create a CPOTrained with Given Internal State |
mlrCPO-package | Composable Preprocessing Operators |
NULLCPO | CPO Composition Neutral Element |
nullcpoToNull | NULLCPO to NULL |
nullToNullcpo | NULL to NULLCPO |
pipeCPO | Turn a 'list' of CPOs into a Single Chained One |
print.CPOConstructor | Print CPO Objects |
pSS | Turn the argument list into a 'ParamSet' |
randomForestSRC_filters | Filter "randomForestSRC_importance" computes the importance... |
setCPOId | Set the ID of a CPO Object |
untyped | defined to avoid problems with the static type checker |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.