cpoImputeNormal | R Documentation |
Allows imputation of missing feature values through various techniques. Note that you have the possibility to re-impute a data set in the same way as the imputation was performed during training. This especially comes in handy during resampling when one wants to perform the same imputation on the test set as on the training set.
cpoImputeNormal(
mu = NA_real_,
sd = NA_real_,
impute.new.levels = TRUE,
recode.factor.levels = TRUE,
id,
export = "export.default",
affect.type = NULL,
affect.index = integer(0),
affect.names = character(0),
affect.pattern = NULL,
affect.invert = FALSE,
affect.pattern.ignore.case = FALSE,
affect.pattern.perl = FALSE,
affect.pattern.fixed = FALSE
)
mu |
[ |
sd |
[ |
impute.new.levels |
[ |
recode.factor.levels |
[ |
id |
[ |
export |
[ |
affect.type |
[ |
affect.index |
[ |
affect.names |
[ |
affect.pattern |
[ |
affect.invert |
[ |
affect.pattern.ignore.case |
[ |
affect.pattern.perl |
[ |
affect.pattern.fixed |
[ |
The description object contains these slots
character
]See argument.
character
]Feature names (column names of data
).
,
character
]Feature classes (storage type of data
).
named list
]Mapping of column names of factor features to their levels, including newly created ones during imputation.
named list
]Mapping of column names to imputation functions.
named list
]Mapping of column names to imputation functions.
logical(1)
]See argument.
logical(1)
]See argument.
[CPO
].
This function creates a CPO object, which can be applied to
Task
s, data.frame
s, link{Learner}
s
and other CPO objects using the %>>%
operator.
The parameters of this object can be changed after creation
using the function setHyperPars
. The other
hyper-parameter manipulating functins, getHyperPars
and getParamSet
similarly work as one expects.
If the “id” parameter is given, the hyperparameters will have this id as aprefix; this will, however, not change the parameters of the creator function.
CPOConstructor
CPO constructor functions are called with optional values of parameters, and additional “special” optional values.
The special optional values are the id
parameter, and the affect.*
parameters. The affect.*
parameters
enable the user to control which subset of a given dataset is affected. If no affect.*
parameters are given, all
data features are affected by default.
Other imputation CPOs:
cpoImputeConstant()
,
cpoImputeHist()
,
cpoImputeLearner()
,
cpoImputeMax()
,
cpoImputeMean()
,
cpoImputeMedian()
,
cpoImputeMin()
,
cpoImputeMode()
,
cpoImputeUniform()
,
cpoImpute()
Other CPOs:
cpoApplyFunRegrTarget()
,
cpoApplyFun()
,
cpoAsNumeric()
,
cpoCache()
,
cpoCbind()
,
cpoCollapseFact()
,
cpoDropConstants()
,
cpoDropMostlyConstants()
,
cpoDummyEncode()
,
cpoFilterAnova()
,
cpoFilterCarscore()
,
cpoFilterChiSquared()
,
cpoFilterFeatures()
,
cpoFilterGainRatio()
,
cpoFilterInformationGain()
,
cpoFilterKruskal()
,
cpoFilterLinearCorrelation()
,
cpoFilterMrmr()
,
cpoFilterOneR()
,
cpoFilterPermutationImportance()
,
cpoFilterRankCorrelation()
,
cpoFilterRelief()
,
cpoFilterRfCImportance()
,
cpoFilterRfImportance()
,
cpoFilterRfSRCImportance()
,
cpoFilterRfSRCMinDepth()
,
cpoFilterSymmetricalUncertainty()
,
cpoFilterUnivariate()
,
cpoFilterVariance()
,
cpoFixFactors()
,
cpoIca()
,
cpoImpactEncodeClassif()
,
cpoImpactEncodeRegr()
,
cpoImputeConstant()
,
cpoImputeHist()
,
cpoImputeLearner()
,
cpoImputeMax()
,
cpoImputeMean()
,
cpoImputeMedian()
,
cpoImputeMin()
,
cpoImputeMode()
,
cpoImputeUniform()
,
cpoImpute()
,
cpoLogTrafoRegr()
,
cpoMakeCols()
,
cpoMissingIndicators()
,
cpoModelMatrix()
,
cpoOversample()
,
cpoPca()
,
cpoProbEncode()
,
cpoQuantileBinNumerics()
,
cpoRegrResiduals()
,
cpoResponseFromSE()
,
cpoSample()
,
cpoScaleMaxAbs()
,
cpoScaleRange()
,
cpoScale()
,
cpoSelect()
,
cpoSmote()
,
cpoSpatialSign()
,
cpoTransformParams()
,
cpoWrap()
,
makeCPOCase()
,
makeCPOMultiplex()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.