Nothing
#' @include utils.R
# create an mlr learner that encapsulates the mlr3-learner encing
# used from within background R session
makeCapsuledLearner <- function(encing) { # nocov start
checkmate::assertClass(encing, "Learner")
checkmate::assertClass(encing, "R6")
property.translate <- list(
missings = "missings",
weights = "weights",
importance = "featimp",
selected_features = character(0),
numeric = "numerics",
factor = "factors",
ordered = "ordered",
se = "se"
)
lr <- mlr::makeRLearnerRegr("CapsuledMlr3Learner",
package = encing$packages,
par.set = ParamHelpers::makeParamSet(),
properties = unlist(unname(property.translate[c(encing$properties, encing$feature_types, encing$predict_types)])),
name = encing$id, short.name = encing$id
)
lr$encing <- encing
lr$fix.factors.prediction = FALSE
mlr::setPredictType(lr, encing$predict_type)
} # nocov end
# used from within background R session
#' @exportS3Method mlr::trainLearner CapsuledMlr3Learner
trainLearner.CapsuledMlr3Learner <- function(.learner, .task, .subset, .weights = NULL, ...) { # nocov start
data <- mlr::getTaskData(.task, .subset)
data.task <- mlr3::TaskRegr$new(mlr::getTaskId(.task), data, mlr::getTaskTargetNames(.task))
lclone <- .learner$encing$clone(deep = TRUE)
lclone$predict_type <- mlr::getLearnerPredictType(.learner)
lclone$train(data.task)
} # nocov end
# used from within background R session
#' @exportS3Method mlr::predictLearner CapsuledMlr3Learner
predictLearner.CapsuledMlr3Learner <- function(.learner, .model, .newdata, ...) { # nocov start
pred <- .model$learner.model$predict_newdata(.newdata)
if (.learner$predict.type == "se") {
cbind(response = pred$response, se = pred$se) # return 2-col numeric matrix
} else {
pred$response # return numeric vector
}
} # nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.