mse: Mean Square Error

Description Usage Arguments Details References Examples

Description

Calculate Mean-Square Error (Deviation)

For the ith sample, Squared Error is calculated as SE = (prediction - actual)^2. MSE is then mean(squared errors).

Usage

1
mse(preds = NULL, actuals = NULL, weights = 1, na.rm = FALSE)

Arguments

preds

A vector of prediction values in [0, 1]

actuals

A vector of actuals values in 0, 1, or FALSE, TRUE

weights

Optional vectors of weights

na.rm

Should (prediction, actual) pairs with at least one NA value be ignored?

Details

Calculate Mean-Square Error (Deviation)

References

https://en.wikipedia.org/wiki/Mean_squared_error

Examples

1
2
3
preds <- c(1.0, 2.0, 9.5)
actuals <- c(0.9, 2.1, 10.0)
mse(preds, actuals)

mltools documentation built on May 2, 2019, 5:22 a.m.