R/RcppExports.R

Defines functions qt0 rt0 pt0 dt0 pbetaDiff rmnorm qnormFast GHK pmnorm fromBase toBase seqPrimes haltonSingleDraw halton dmnorm cmnorm

Documented in cmnorm dmnorm dt0 fromBase halton pbetaDiff pmnorm pt0 qnormFast qt0 rmnorm rt0 seqPrimes toBase

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#' Parameters of conditional multivariate normal distribution
#' @description This function calculates mean (expectation) and covariance 
#' matrix of conditional multivariate normal distribution.
#' @template param_mean_Template
#' @template param_sigma_Template
#' @template param_given_ind_Template
#' @template param_given_x_Template
#' @template param_dependent_ind_Template
#' @template param_is_validation_Template
#' @template param_is_names_Template
#' @template param_control_Template
#' @template param_n_cores_Template
#' @template details_cmnorm_Template
#' @template return_cmnorm_Template
#' @template example_cmnorm_Template
#' @export
cmnorm <- function(mean, sigma, given_ind, given_x, dependent_ind = numeric(), is_validation = TRUE, is_names = TRUE, control = NULL, n_cores = 1L) {
    .Call(`_mnorm_cmnorm`, mean, sigma, given_ind, given_x, dependent_ind, is_validation, is_names, control, n_cores)
}

#' Density of (conditional) multivariate normal distribution
#' @description This function calculates and differentiates density of 
#' (conditional) multivariate normal distribution.
#' @template param_x_Template
#' @template param_mean_Template
#' @template param_sigma_Template
#' @template param_given_ind_2_Template
#' @template param_log_Template
#' @template param_grad_x_Template
#' @template param_grad_sigma_Template
#' @template param_is_validation_Template
#' @template param_control_Template
#' @template param_n_cores_Template
#' @template details_dmnorm_Template
#' @template return_dmnorm_Template
#' @template example_dmnorm_Template
#' @references E. Kossova., B. Potanin (2018). 
#' Heckman method and switching regression model multivariate generalization.
#' Applied Econometrics, vol. 50, pages 114-143.
#' @export
dmnorm <- function(x, mean, sigma, given_ind = numeric(), log = FALSE, grad_x = FALSE, grad_sigma = FALSE, is_validation = TRUE, control = NULL, n_cores = 1L) {
    .Call(`_mnorm_dmnorm`, x, mean, sigma, given_ind, log, grad_x, grad_sigma, is_validation, control, n_cores)
}

#' Halton sequence
#' @description Calculate elements of the Halton sequence and of
#' some other pseudo-random sequences.
#' @param n positive integer representing the number of sequence elements.
#' @param base vector of positive integers greater then one representing
#' the bases for each of the sequences.
#' @param start non-negative integer representing the index of the first 
#' element of the sequence to be included in the output sequence.
#' @param random string representing the method of randomization to be
#' applied to the sequence. If \code{random = "NO"} (default) then
#' there is no randomization. If \code{random = "Tuffin"} then standard uniform
#' random variable will be added to each element of the sequence and 
#' the difference between this sum and it's 'floor' will be returned as
#' a new element of the sequence.
#' @param type string representing type of the sequence. Default is "halton"
#' that is Halton sequence. The alternative is "richtmyer" corresponding 
#' to Richtmyer sequence.
#' @param scrambler string representing scrambling method for the 
#' Halton sequence. Possible options are \code{"NO"} (default), \code{"root"}
#' and \code{"negroot"} which described in S. Kolenikov (2012).
#' @template param_is_validation_Template
#' @template param_n_cores_Template
#' @details Function \code{\link[mnorm]{seqPrimes}} could be used to
#' provide the prime numbers for the \code{base} input argument.
#' @return The function returns a matrix which \code{i}-th column
#' is a sequence with base \code{base[i]} and elements with indexes
#' from \code{start} to \code{start + n}.
#' @references J. Halton (1964) <doi:10.2307/2347972>
#' @references S. Kolenikov (2012) <doi:10.1177/1536867X1201200103>
#' @examples halton(n = 100, base = c(2, 3, 5), start = 10)
halton <- function(n = 1L, base = as.integer( c(2)), start = 1L, random = "NO", type = "halton", scrambler = "NO", is_validation = TRUE, n_cores = 1L) {
    .Call(`_mnorm_halton`, n, base, start, random, type, scrambler, is_validation, n_cores)
}

haltonSingleDraw <- function(ind = 1L, base = 2L, scrambler = "NO") {
    .Call(`_mnorm_haltonSingleDraw`, ind, base, scrambler)
}

#' Sequence of prime numbers
#' @description Calculates the sequence of prime numbers.
#' @param n positive integer representing the number of sequence elements.
#' @return The function returns a numeric vector containing 
#' first \code{n} prime numbers. The current (naive) implementation of the 
#' algorithm is not efficient in terms of speed so it is suited for low 
#' \code{n < 10000} but requires just O(n) memory usage.
#' @examples seqPrimes(10)
seqPrimes <- function(n) {
    .Call(`_mnorm_seqPrimes`, n)
}

#' Convert integer value to other base
#' @description Converts integer value to other base.
#' @param x positive integer representing the number to convert.
#' @param base positive integer representing the base.
#' @return The function returns a numeric vector containing 
#' representation of \code{x} in a base given in \code{base}.
#' @examples toBase(888, 5)
toBase <- function(x, base = 2L) {
    .Call(`_mnorm_toBase`, x, base)
}

#' Convert base representation of a number into integer
#' @description Converts base representation of a number into integer.
#' @param x vector of positive integer coefficients representing the number
#' in base that is \code{base}.
#' @param base positive integer representing the base.
#' @return The function returns a positive integer that is a
#' conversion from \code{base} under given coefficients \code{x}.
#' @examples fromBase(c(1, 2, 0, 2, 3), 5)
fromBase <- function(x, base = 2L) {
    .Call(`_mnorm_fromBase`, x, base)
}

#' Probabilities of (conditional) multivariate normal distribution
#' @description This function calculates and differentiates probabilities of
#' (conditional) multivariate normal distribution.
#' @template details_pmnorm_Template
#' @template param_lower_Template
#' @template param_upper_Template
#' @template param_given_x_Template
#' @template param_mean_Template
#' @template param_sigma_Template
#' @template param_given_ind_Template
#' @template param_n_sim_Template
#' @template param_method_Template
#' @template param_ordering_Template
#' @template param_log_Template
#' @template param_grad_lower_Template
#' @template param_grad_upper_Template
#' @template param_grad_sigma_pmnorm_Template
#' @template param_grad_given_Template
#' @template param_is_validation_Template
#' @template param_control_Template
#' @template param_n_cores_Template
#' @template param_marginal_Template
#' @template param_grad_marginal_Template
#' @template param_grad_marginal_prob_Template
#' @template return_pmnorm_Template
#' @template example_pmnorm_Template
#' @references Genz, A. (2004), Numerical computation of rectangular bivariate 
#' and trivariate normal and t-probabilities, Statistics and 
#' Computing, 14, 251-260.
#' @references Genz, A. and Bretz, F. (2009), Computation of Multivariate 
#' Normal and t Probabilities. Lecture Notes in Statistics, Vol. 195. 
#' Springer-Verlag, Heidelberg.
#' @references E. Kossova, B. Potanin (2018). 
#' Heckman method and switching regression model multivariate generalization.
#' Applied Econometrics, vol. 50, pages 114-143.
#' @references H. I. Gassmann (2003). 
#' Multivariate Normal Probabilities: Implementing an Old Idea of Plackett's.
#' Journal of Computational and Graphical Statistics, vol. 12 (3),
#' pages 731-752.
#' @export
pmnorm <- function(lower, upper, given_x = numeric(), mean = numeric(), sigma = matrix(), given_ind = numeric(), n_sim = 1000L, method = "default", ordering = "mean", log = FALSE, grad_lower = FALSE, grad_upper = FALSE, grad_sigma = FALSE, grad_given = FALSE, is_validation = TRUE, control = NULL, n_cores = 1L, marginal = NULL, grad_marginal = FALSE, grad_marginal_prob = FALSE) {
    .Call(`_mnorm_pmnorm`, lower, upper, given_x, mean, sigma, given_ind, n_sim, method, ordering, log, grad_lower, grad_upper, grad_sigma, grad_given, is_validation, control, n_cores, marginal, grad_marginal, grad_marginal_prob)
}

GHK <- function(lower, upper, sigma, h, ordering = "default", n_sim = 1000L, n_cores = 1L) {
    .Call(`_mnorm_GHK`, lower, upper, sigma, h, ordering, n_sim, n_cores)
}

#' Quantile function of a normal distribution
#' @description Calculate quantile of a normal distribution using
#' one of the available methods.
#' @param p numeric vector of values between 0 and 1 representing levels of
#' the quantiles.
#' @param mean numeric value representing the expectation of a
#' normal distribution.
#' @param sd positive numeric value representing standard deviation of a
#' normal distribution.
#' @param method character representing the method to be used for
#' quantile calculation. Available options are "Voutier" (default) and "Shore".
#' @template param_is_validation_Template
#' @template param_n_cores_Template
#' @details If \code{method = "Voutier"} then the method of P. Voutier (2010)
#' is used which maximum absolute error is about \eqn{0.000025}.
#' If \code{method = "Shore"} then the approach proposed
#' by H. Shore (1982) is applied which maximum absolute error is about
#' \eqn{0.026} for quantiles of level between \eqn{0.0001} 
#' and \eqn{0.9999}.
#' @return The function returns a vector of \code{p}-level quantiles of a
#' normal distribution with mean equal to \code{mean} and standard 
#' deviation equal to \code{sd}.
#' @references H. Shore (1982) <doi:10.2307/2347972>
#' @references P. Voutier (2010) <doi:10.48550/arXiv.1002.0567>
#' @examples qnormFast(c(0.1, 0.9), mean = 1, sd = 2)
qnormFast <- function(p, mean = 0L, sd = 1L, method = "Voutier", is_validation = TRUE, n_cores = 1L) {
    .Call(`_mnorm_qnormFast`, p, mean, sd, method, is_validation, n_cores)
}

#' Random number generator for (conditional) multivariate normal distribution
#' @description This function generates random numbers (i.e. variates) from 
#' (conditional) multivariate normal distribution.
#' @param n positive integer representing the number of random variates
#' to be generated from (conditional) multivariate normal distribution.
#' If \code{given_ind} is not empty vector then \code{n} should be
#' be equal to \code{nrow(given_x)}.
#' @template param_mean_Template
#' @template param_sigma_Template
#' @template param_given_ind_Template
#' @template param_given_x_Template
#' @template param_dependent_ind_Template
#' @template param_is_validation_Template
#' @template param_n_cores_Template
#' @details This function uses Cholesky decomposition to generate multivariate
#' normal variates from independent standard normal variates.
#' @template example_rmnorm_Template
#' @return This function returns a numeric matrix which rows a random variates
#' from (conditional) multivariate normal distribution with mean equal to
#' \code{mean} and covariance equal to \code{sigma}. If \code{given_x} and 
#' \code{given_ind} are also provided then random variates will be from
#' conditional multivariate normal distribution. Please, see details section
#' of \code{\link[mnorm]{cmnorm}} to get additional information on the 
#' conditioning procedure.
#' @export
rmnorm <- function(n, mean, sigma, given_ind = numeric(), given_x = numeric(), dependent_ind = numeric(), is_validation = TRUE, n_cores = 1L) {
    .Call(`_mnorm_rmnorm`, n, mean, sigma, given_ind, given_x, dependent_ind, is_validation, n_cores)
}

#' Differentiate Regularized Incomplete Beta Function.
#' @description Calculate derivatives of the regularized incomplete 
#' beta function that is a cumulative distribution function of the beta
#' distribution.
#' @param x numeric vector of values between 0 and 1. It is similar to
#' \code{q} argument of \code{\link[stats]{pbeta}} function.
#' @param p similar to \code{shape1} argument of 
#' \code{\link[stats]{pbeta}} function.
#' @param q similar to \code{shape2} argument of 
#' \code{\link[stats]{pbeta}} function.
#' @param n positive integer representing the number of iterations used
#' to calculate the derivatives. Greater values provide higher accuracy by the
#' cost of more computational resources.
#' @param is_validation logical; if \code{TRUE} then input arguments are
#' validated. Set to \code{FALSE} to slightly increase the performance
#' of the function.
#' @param control list of control parameters. Currently not intended 
#' for the users.
#' @details The function implements differentiation algorithm of 
#' R. Boik and J. Robinson-Cox (1998). 
#' Currently only first-order derivatives are considered.
#' @return The function returns a list which has the following elements:
#' \itemize{
#' \item \code{dx} - numeric vector of derivatives respect to each 
#' element of \code{x}.
#' \item \code{dp} - numeric vector of derivatives respect to \code{p} for
#' each element of \code{x}.
#' \item \code{dq} - numeric vector of derivatives respect to \code{q} for
#' each element of \code{x}.
#' }
#' @references Boik, R. J. and Robinson-Cox, J. F. (1998). Derivatives of the 
#' Incomplete Beta Function. Journal of Statistical Software, 3 (1),
#' pages 1-20.
#' @template example_pbetaDiff_Template
pbetaDiff <- function(x, p = 10, q = 0.5, n = 10L, is_validation = TRUE, control = NULL) {
    .Call(`_mnorm_pbetaDiff`, x, p, q, n, is_validation, control)
}

#' Standardized Student t Distribution
#' @name stdt
#' @description These functions calculate and differentiate a cumulative 
#' distribution function and density function of the standardized 
#' (to zero mean and unit variance) Student distribution. Quantile function 
#' and random numbers generator are also provided.
#' @param x numeric vector of quantiles.
#' @param df positive real value representing the number of degrees of freedom.
#' Since this function deals with standardized Student distribution, argument
#' \code{df} should be greater than \code{2} because otherwise variance is
#' undefined.
#' @param log logical; if \code{TRUE} then probabilities (or densities) p 
#' are given as log(p) and derivatives will be given respect to log(p).
#' @param grad_x logical; if \code{TRUE} then function returns a derivative
#' respect to \code{x}.
#' @param grad_df logical; if \code{TRUE} then function returns a derivative
#' respect to \code{df}.
#' @param n positive integer. If \code{rt0} function is used then this 
#' argument represents the number of random draws. Otherwise \code{n} states 
#' for the number of iterations used to calculate the derivatives associated 
#' with \code{pt0} function via \code{\link[mnorm]{pbetaDiff}} function.
#' @template details_t0_Template
#' @template return_t0_Template
#' @template example_t0_Template
dt0 <- function(x, df = 10, log = FALSE, grad_x = FALSE, grad_df = FALSE) {
    .Call(`_mnorm_dt0`, x, df, log, grad_x, grad_df)
}

#' @name stdt
#' @export
pt0 <- function(x, df = 10, log = FALSE, grad_x = FALSE, grad_df = FALSE, n = 10L) {
    .Call(`_mnorm_pt0`, x, df, log, grad_x, grad_df, n)
}

#' @name stdt
#' @export
rt0 <- function(n = 1L, df = 10) {
    .Call(`_mnorm_rt0`, n, df)
}

#' @name stdt
#' @export
qt0 <- function(x = 1L, df = 10) {
    .Call(`_mnorm_qt0`, x, df)
}

# Register entry points for exported C++ functions
methods::setLoadAction(function(ns) {
    .Call(`_mnorm_RcppExport_registerCCallable`)
})

Try the mnorm package in your browser

Any scripts or data that you put into this service are public.

mnorm documentation built on May 29, 2024, 2:05 a.m.