Description Usage Arguments Value References See Also Examples
Fits the bivariate conditional extremes model (from Heffernan and Tawn (2004) and texmex R package) and provides
estimates of a conditional or joint exceedance level curve with a probability corresponding to 'pobj
'. Also provides estimates of dependence measures.
1 2 3 4 5 6 7 8 9 10 11 12 13 | Cond.mod.ap(
u2,
tr1,
tr2,
tsim,
num.sim,
pobj,
interh = "comb",
mar1,
mar2,
px,
py
)
|
u2 |
Two column data frame |
tr1 |
extreme threshold for first variable |
tr2 |
extreme threshold for second variable |
tsim |
Prediction quantile. The quantile of the conditioning variable above which it will be simulated for importance sampling based prediction (from texmex) |
num.sim |
The number of simulated observations to be generated for prediction (from texmex) |
pobj |
objective joint return period modelled with the conditional extremes model |
interh |
type of hazard interrelation ' |
mar1 |
Values of the first margin |
mar2 |
Values of the second margin |
px |
Uniform values of the first margin with a mixed distribution (empirical below and gpd above a threshold) |
py |
Uniform values of the second margin with a mixed distribution (empirical below and gpd above a threshold) |
a list containing the following:
jline - data frame of the objective level curve with the selected return period 'pobj
'
onlysim - data frame of simulated extreme data for the two variables
etaHT - threshold dependent extremal dependence measure
chiHT - threshold dependent coefficient of tail dependence
Tilloy, A., Malamud, B.D., Winter, H. and Joly-Laugel, A., 2020. Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios. Natural Hazards and Earth System Sciences, 20(8), pp.2091-2117.
Heffernan, J.E. and Tawn, J.A., 2004. A conditional approach for multivariate extreme values (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(3), pp.497-546.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # Import data
data(porto)
tr1=0.9
tr2=0.9
fire01meantemp=na.omit(fire01meantemp)
u=fire01meantemp
#Compute uniform margins
marg=Margins.mod(tr1,tr2,u=fire01meantemp)
kk=marg$uvar
pp=marg$uvar_ext
uu=marg$val_ext
upobj=0.001
t.sim=0.98
interh="comb"
## Not run:
# Fit conditional extremes model
condexres<-Cond.mod.ap(u2=u,tr1,tr2,tsim=t.sim,num.sim=10000,
pobj=upobj,mar1=uu[,1],mar2=uu[,2],px=pp[,1],py=pp[,2],interh=interh)
plot(condexres$jline)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.