Description Usage Arguments Value References See Also Examples
Fits the bivariate joint tail model with Kernel density estimator (Adapted from Cooley et al. (2019))and provides
estimates of a conditional or joint exceedance level curve with a probability corresponding to 'pobj
'.
Also provides estimates of dependence measures.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
u2 |
Two column data frame |
pbas |
joint return period to be modelled with a kde |
pobj |
objective joint return period modelled with the joint tail model |
beta |
smoothing parameter for the transition between asymptotic dependent and independent regimes near the axes |
vtau |
estimate of the rank correlation between the two variables |
devplot |
additional plots for development (significantly slows the function) |
kk |
uniform margins of the original data |
mar1 |
Values of the first margin |
mar2 |
Values of the second margin |
px |
Uniform values of the first margin with a mixed distribution (empirical below and gpd above a threshold) |
py |
Uniform values of the second margin with a mixed distribution (empirical below and gpd above a threshold) |
interh |
type of hazard interrelation ' |
a list containing the following:
levelcurve - data frame the objective containing level curve with a return level 'pobj
'
wq0ri - matrix of the base level curve with a return level 'pbas
'
etaJT - threshold dependent extremal dependence measure
chiJT - threshold dependent coefficient of tail dependence
Tilloy, A., Malamud, B.D., Winter, H. and Joly-Laugel, A., 2020. Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios. Natural Hazards and Earth System Sciences, 20(8), pp.2091-2117.
Cooley, D., Thibaud, E., Castillo, F. and Wehner, M.F., 2019. A nonparametric method for producing isolines of bivariate exceedance probabilities. Extremes, 22(3), pp.373-390.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # Inport data
data(porto)
tr1=0.9
tr2=0.9
fire01meantemp=na.omit(fire01meantemp)
u=fire01meantemp
# Compute uniform margins
marg=Margins.mod(tr1,tr2,u=fire01meantemp)
kk=marg$uvar
pp=marg$uvar_ext
uu=marg$val_ext
upobj=0.001
vtau=cor.test(x=u[,1],y=u[,2],method="kendall")$estimate
interh="comb"
## Not run:
# Fit JT-KDE model
jtres<-JT.KDE.ap(u2=u,pbas=0.01,pobj=upobj,beta=100,kk=kk,vtau=vtau,
devplot=FALSE,mar1=uu[,1],mar2=uu[,2],px=pp[,1],py=pp[,2],interh=interh)
plot(jtres$levelcurve)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.