Description Usage Arguments Details Value Note References See Also Examples
Parzen's kernel mode estimator is the value maximizing the kernel density estimate.
1 2 3 4 5 6 7 8 |
x |
numeric. Vector of observations. |
bw |
numeric. The smoothing bandwidth to be used. |
kernel |
character. The kernel to be used. For available kernels see
|
abc |
logical. If |
tolerance |
numeric. Desired accuracy in the |
... |
If |
If kernel = "uniform"
, the naive
mode estimate is returned.
parzen
returns a numeric value, the mode estimate.
If abc = TRUE
, the x
value maximizing the density
estimate is returned. Otherwise, the optim
method is used to perform maximization, and the attributes:
'value', 'counts', 'convergence' and 'message', coming from
the optim
method, are added to the result.
The user may call parzen
through
mlv(x, method = "kernel", ...)
or mlv(x, method = "parzen", ...)
.
Presently, parzen
is quite slow.
Parzen E. (1962). On estimation of a probability density function and mode. Ann. Math. Stat., 33(3):1065–1076.
Konakov V.D. (1973). On the asymptotic normality of the mode of multidimensional distributions. Theory Probab. Appl., 18:794-803.
Eddy W.F. (1980). Optimum kernel estimators of the mode. Ann. Statist., 8(4):870-882.
Eddy W.F. (1982). The Asymptotic Distributions of Kernel Estimators of the Mode. Z. Wahrsch. Verw. Gebiete, 59:279-290.
Romano J.P. (1988). On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist., 16(2):629-647.
Abraham C., Biau G. and Cadre B. (2003). Simple Estimation of the Mode of a Multivariate Density. Canad. J. Statist., 31(1):23-34.
Abraham C., Biau G. and Cadre B. (2004). On the Asymptotic Properties of a Simple Estimate of the Mode. ESAIM Probab. Stat., 8:1-11.
1 2 3 4 5 6 7 8 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.