Description Usage Arguments Details Value Warning Note References See Also Examples
This mode estimator is based on a gradient-like recursive algorithm, more adapted for online estimation. It includes the Mizoguchi-Shimura (1976) mode estimator, based on the window training procedure.
1 2 3 4 5 6 7 8 9 |
x |
numeric. Vector of observations. |
bw |
numeric. Vector of length |
a |
numeric. Vector of length |
alpha |
numeric. An alternative way of specifying |
kernel |
character. The kernel to be used. Available kernels are
|
dmp |
logical. If |
par |
numeric. Initial value in the gradient algorithm.
Default value is |
If bw
or a
is missing, a default
value advised by Djeddour et al (2003) is used:
bw = (1:length(x))^(-1/7)
and a = (1:length(x))^(-alpha)
.
(with alpha = 0.9
if alpha
is missing).
A numeric value is returned, the mode estimate.
The Tsybakov mode estimate as it is presently computed does not work very well. The reasons of this inefficiency should be further investigated.
The user may call tsybakov
through
mlv(x, method = "tsybakov", ...)
.
Mizoguchi R. and Shimura M. (1976). Nonparametric Learning Without a Teacher Based on Mode Estimation. IEEE Transactions on Computers, C25(11):1109-1117.
Tsybakov A. (1990). Recursive estimation of the mode of a multivariate distribution. Probl. Inf. Transm., 26:31-37.
Djeddour K., Mokkadem A. et Pelletier M. (2003). Sur l'estimation recursive du mode et de la valeur modale d'une densite de probabilite. Technical report 105.
Djeddour K., Mokkadem A. et Pelletier M. (2003). Application du principe de moyennisation a l'estimation recursive du mode et de la valeur modale d'une densite de probabilite. Technical report 106.
mlv
for general mode estimation.
1 2 3 4 5 6 7 8 9 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.