Given independent and identically distributed observations X(1), ..., X(n) from a density f, provides five methods to perform a multiscale analysis about f as well as the necessary critical values. The first method, introduced in Duembgen and Walther (2008), provides simultaneous confidence statements for the existence and location of local increases (or decreases) of f, based on all intervals I(all) spanned by any two observations X(j), X(k). The second method approximates the latter approach by using only a subset of I(all) and is therefore computationally much more efficient, but asymptotically equivalent. Omitting the additive correction term Gamma in either method offers another two approaches which are more powerful on small scales and less powerful on large scales, however, not asymptotically minimax optimal anymore. Finally, the block procedure is a compromise between adding Gamma or not, having intermediate power properties. The latter is again asymptotically equivalent to the first and was introduced in Rufibach and Walther (2010).
Package details 


Author  Kaspar Rufibach <[email protected]> and Guenther Walther <[email protected]> 
Maintainer  Kaspar Rufibach <[email protected]> 
License  GPL (>= 2) 
Version  1.0.7 
URL  http://www.kasparrufibach.ch http://wwwstat.stanford.edu/~gwalther 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.