Nothing
#' @title World map
#' @description A dataset of class SpatialPolygonsDataFrame of the World map
#' @name wrld
#' @docType data
#' @author M. Iturbide
#' @keywords map
NULL
#' @title Oak distribution
#' @description A dataset consisting of a list with two
#' data frames with xy coordinates corresponding to the distribution of two
#' phylogenetic groups of oaks (H11 and H1)
#' @name Oak_phylo2
#' @docType data
#' @keywords xy records
#' @source Oak_phylo2 is a modified subset of the \strong{Quercus sp Europe Petit 2002}
#' database (Petit et al., 2002b), which is available in the \strong{Georeferenced Database
#' of Genetic Diversity} or \strong{(GD)^2}.
#' @references Petit, R. J. \emph{et al} 2002. Chloroplast DNA variation in european
#' white oaks: Phylogeography and patterns of diversity based on data from over 2600 populations.
#' Forest Ecology and Management 156 (1-3), 5-26.
#'
#' Evolution of Trees and Forest Communities \cr
#' Ten years of the EVOLTREE network \cr
#' Evoltree E-Lab - An information system for forest genetics \cr
#' ISBN: 978-2-9519296-3-9
NULL
#' @title Quercus pubsencens distribution
#' @description A data frame with xy coordinates of Quercus pubesnces distribution
#' @name Q_pubescens
#' @docType data
#' @keywords xy records
#' @source Q_pubescens is a modified subset of occurrences obtained from \strong{GBIF.org}
#' @references GBIF.org (14th March 2017) GBIF Occurrence Download http://doi.org/10.15468/dl.4ss6vr
NULL
#' @title Fitted models
#' @description List of fitted models as returned by functions \code{\link{mopaTrain}} and
#' \code{\link{extractFromModel}}.
#' @name mods
#' @docType data
#' @keywords xy records
#' @source # RS_random is the result of running the following code:
#'
#' data(Oak_phylo2)
#'
#' presences <- Oak_phylo2$H11
#'
#' destfile <- tempfile()
#'
#' data.url <- "https://raw.githubusercontent.com/SantanderMetGroup/mopa/master/data/biostack.rda"
#'
#' download.file(data.url, destfile)
#'
#' load(destfile, verbose = TRUE)
#'
#' r <- biostack$baseline[[1]]
#'
#' ## Background of the whole study area
#' bg <- backgroundGrid(r)
#'
#' ## Considering an unique background extent
#'
#' RS_random <-pseudoAbsences(xy = presences, background = bg$xy,
#' realizations = 5,
#' exclusion.buffer = 0.083*5, prevalence = -0.5, kmeans = FALSE)
#'
#' fittedModels <- mopaTrain(y = RS_random, x = biostack$baseline, k = 10,
#' algorithm = "mars")
#'
#' mods <- extractFromModel(models = fittedModels, value = "model")
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.