| collectResult | R Documentation |
Merge both log and log.newinds data for a complete data.frame
with information about progress (both on training data and on
holdout data) and ressource usage.
collectResult(
ecr.object,
aggregate.perresult = list(domHV = function(x) computeHV(x, ref.point)),
aggregate.perobjective = list("min", "mean", "max"),
ref.point = smoof::getRefPoint(ecr.object$control$task$fitness.fun),
cor.fun = cor
)
ecr.object |
|
aggregate.perresult |
|
aggregate.perobjective |
|
ref.point |
|
cor.fun |
|
data.frame
library(mlrCPO)
# Setup of optimization problem
ps.simple <- pSS(
a: numeric [0, 10],
selector.selection: logical^10)
mutator.simple <- combine.operators(ps.simple,
a = mutGauss,
selector.selection = mutBitflipCHW)
crossover.simple <- combine.operators(ps.simple,
a = recSBX,
selector.selection = recPCrossover)
initials <- sampleValues(ps.simple, 30, discrete.names = TRUE)
fitness.fun <- smoof::makeMultiObjectiveFunction(
sprintf("simple test"),
has.simple.signature = FALSE, par.set = ps.simple, n.objectives = 2,
noisy = TRUE,
ref.point = c(10, 1),
fn = function(args, fidelity = NULL, holdout = FALSE) {
pfeat <- mean(args$selector.selection)
c(perform = args$a, pfeat = pfeat)
})
fitness.fun.single <- smoof::makeMultiObjectiveFunction(
sprintf("simple test"),
has.simple.signature = FALSE, par.set = ps.simple, n.objectives = 1,
noisy = TRUE,
ref.point = c(10),
fn = function(args, fidelity = NULL, holdout = FALSE) {
propfeat <- mean(args$selector.selection)
c(propfeat = propfeat)
})
# Run NSGA-II
results <- slickEcr(fitness.fun = fitness.fun, lambda = 10, population = initials,
mutator = mutator.simple, recombinator = crossover.simple, generations = 10)
# Collect results
colres <- collectResult(results)
print(colres)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.