| cv.irsvm | R Documentation | 
Does k-fold cross-validation for irsvm
## S3 method for class 'formula'
cv.irsvm(formula, data, weights, contrasts=NULL, ...)
## S3 method for class 'matrix'
cv.irsvm(x, y, weights, ...)
## Default S3 method:
cv.irsvm(x,  ...)
formula | 
 symbolic description of the model, see details.  | 
data | 
 argument controlling formula processing
via   | 
x | 
 
  | 
y | 
 response   | 
weights | 
 Observation weights; defaults to 1 per observation  | 
contrasts | 
 the contrasts corresponding to   | 
... | 
 Other arguments that can be passed to   | 
Does a K-fold cross-validation to determine optimal tuning parameters in SVM: cost and gamma if kernel is nonlinear. It can also choose s used in cfun. 
An object contains a list of ingredients of cross-validation including optimal tuning parameters.
residmat | 
 matrix with row values for   | 
cost | 
 a value of   | 
gamma | 
 a value of   | 
s | 
 value of   | 
Zhu Wang <zwang145@uthsc.edu>
Zhu Wang (2024) Unified Robust Estimation, Australian & New Zealand Journal of Statistics. 66(1):77-102.
irsvm
## Not run: 
x <- matrix(rnorm(40*2), ncol=2)
y <- c(rep(-1, 20), rep(1, 20))
x[y==1,] <- x[y==1, ] + 1
irsvm.opt <- cv.irsvm(x, y, type="C-classification", s=1, kernel="linear", cfun="acave")
irsvm.opt$cost
irsvm.opt$gamma
irsvm.opt$s
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.