Description Usage Arguments Value Examples
Calculates the parametric bootstrap mean squared error estimates of ratio benchmarking for univariate small area estimation
1 2 3 4 5 6 7 8 9 10 |
formula |
an object of class list of formula describe the fitted model |
vardir |
vector containing sampling variances of direct estimators |
weight |
vector containing proportion of units in small areas |
samevar |
logical. If |
B |
number of bootstrap. Default is 1000 |
MAXITER |
maximum number of iterations for Fisher-scoring. Default is 100 |
PRECISION |
coverage tolerance limit for the Fisher Scoring algorithm. Default value is |
data |
dataframe containing the variables named in formula, vardir, and weight |
mse.eblup |
estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao |
pbmse.eblupRB |
parametric bootstrap mean squared error estimates of the ratio benchmark |
running.time |
time for running function |
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## load dataset
data(datamsaeRB)
# Compute MSE EBLUP and Ratio Benchmark
## Using parameter 'data'
mse_sae = mse_saeRB(Y1 ~ X1 + X2, v1, w1, data = datamsaeRB)
## Without parameter 'data'
mse_sae = mse_saeRB(datamsaeRB$Y1 ~ datamsaeRB$X1 + datamsaeRB$X2, datamsaeRB$v1, datamsaeRB$w1)
## Return
mse_sae$pbmse.eblupRB # to see the MSE Ratio Benchmark estimators
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.