mse_saeRB: Parametric Bootstrap Mean Squared Error Estimators of Ratio...

Description Usage Arguments Value Examples

View source: R/mse_saeRB.R

Description

Calculates the parametric bootstrap mean squared error estimates of ratio benchmarking for univariate small area estimation

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
mse_saeRB(
  formula,
  vardir,
  weight,
  samevar = FALSE,
  B = 1000,
  MAXITER = 100,
  PRECISION = 1e-04,
  data
)

Arguments

formula

an object of class list of formula describe the fitted model

vardir

vector containing sampling variances of direct estimators

weight

vector containing proportion of units in small areas

samevar

logical. If TRUE, the varians is same. Default is FALSE

B

number of bootstrap. Default is 1000

MAXITER

maximum number of iterations for Fisher-scoring. Default is 100

PRECISION

coverage tolerance limit for the Fisher Scoring algorithm. Default value is 1e-4

data

dataframe containing the variables named in formula, vardir, and weight

Value

mse.eblup

estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao

pbmse.eblupRB

parametric bootstrap mean squared error estimates of the ratio benchmark

running.time

time for running function

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
## load dataset
data(datamsaeRB)

# Compute MSE EBLUP and Ratio Benchmark

## Using parameter 'data'
mse_sae = mse_saeRB(Y1 ~ X1 + X2, v1, w1, data = datamsaeRB)

## Without parameter 'data'
mse_sae = mse_saeRB(datamsaeRB$Y1 ~ datamsaeRB$X1 + datamsaeRB$X2, datamsaeRB$v1, datamsaeRB$w1)

## Return
mse_sae$pbmse.eblupRB # to see the MSE Ratio Benchmark estimators

msaeRB documentation built on June 13, 2021, 1:06 a.m.