Description Usage Arguments Value Examples
Calculates the parametric bootstrap mean squared error estimates of ratio benchmarking for multivariate small area estimation
1 2 3 4 5 6 7 8 9 10 | mse_msaeRB(
formula,
vardir,
weight,
samevar = FALSE,
B = 1000,
MAXITER = 100,
PRECISION = 1e-04,
data
)
|
formula |
an object of class list of formula describe the fitted models |
vardir |
matrix containing sampling variances of direct estimators. The order is: |
weight |
matrix containing proportion of units in small areas. The order is: |
samevar |
logical. If |
B |
number of bootstrap. Default is 1000 |
MAXITER |
maximum number of iterations for Fisher-scoring. Default is 100 |
PRECISION |
coverage tolerance limit for the Fisher Scoring algorithm. Default value is |
data |
dataframe containing the variables named in formula, vardir, and weight |
mse.eblup |
estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao |
pbmse.eblupRB |
parametric bootstrap mean squared error estimates of the ratio benchmark |
running.time |
time for running function |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## load dataset
data(datamsaeRB)
# Compute MSE EBLUP and Ratio Benchmark
# This is the long running example
## Using parameter 'data'
Fo = list(f1 = Y1 ~ X1 + X2,
f2 = Y2 ~ X1 + X2,
f3 = Y3 ~ X1 + X2)
vardir = c("v1", "v12", "v13", "v2", "v23", "v3")
weight = c("w1", "w2", "w3")
mse_msae = est_msaeRB(Fo, vardir, weight, data = datamsaeRB)
## Without parameter 'data'
Fo = list(f1 = datamsaeRB$Y1 ~ datamsaeRB$X1 + datamsaeRB$X2,
f2 = datamsaeRB$Y2 ~ datamsaeRB$X1 + datamsaeRB$X2,
f3 = datamsaeRB$Y3 ~ datamsaeRB$X1 + datamsaeRB$X2)
vardir = datamsaeRB[, c("v1", "v12", "v13", "v2", "v23", "v3")]
weight = datamsaeRB[, c("w1", "w2", "w3")]
mse_msae = mse_msaeRB(Fo, vardir, weight)
## Return
mse_msae$pbmse.eblupRB # to see the MSE of Ratio Benchmark
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.