Nothing
#' A GEE Solver For Correlated Nominal Or Ordinal Multinomial Responses
#'
#' A generalized estimating equations (GEE) solver for fitting marginal
#' regression models with correlated nominal or ordinal multinomial responses
#' based on a local odds ratios parameterization for the association structure.
#'
#' The package contains two functions that fit GEE models for correlated
#' multinomial responses; \link{ordLORgee} for an ordinal response scale and
#' \link{nomLORgee} for a nominal response scale.
#'
#' The main arguments in both functions are: (i) an optional data frame
#' (\code{data}), (ii) a model formula (\code{formula}), (iii) a cluster
#' identifier variable (\code{id}) and (iv) an optional vector that identifies
#' the order of the observations within each cluster (\code{repeated}).
#'
#' Options for the marginal model in the function \link{ordLORgee} include
#' cumulative link models or an adjacent categories logit model. A marginal
#' baseline category logit model is offered in the function \link{nomLORgee}.
#' For the form of the linear predictor in these models, see the \code{Details}
#' sections in \link{nomLORgee} and \link{ordLORgee}.
#'
#' The association structure among the correlated multinomial responses is
#' expressed via marginalized local odds ratios (\cite{Touloumis et al.,
#' 2013}). The estimating procedure for the local odds ratios can be summarized
#' as follows: For each level pair of the \code{repeated} variable, the
#' available responses are aggregated across clusters to form a square
#' marginalized contingency table. Treating these tables as independent, an
#' RC-G(1) type model (\cite{Becker and Clogg, 1989}) is fitted in order to
#' estimate the marginalized local odds ratios. The \code{LORstr} argument
#' determines the form of the marginalized local odds ratios structure. Since
#' the general RC-G(1) model is closely related to the family of association
#' models (\cite{Goodman, 1985}), one can instead fit an association model to
#' each of the marginalized contingency tables by setting \code{LORem="2way"}.
#'
#' If the underlying association pattern does not change dramatically across
#' the level pairs of \code{repeated} then parsimonious marginalized local odds
#' ratios should sufficiently approximate the true underlying association
#' structure. To assess the underlying association structure, one might use the
#' utility function \link{intrinsic.pars}.
#'
#' Instead of estimating the local odds ratios structure, a user-defined
#' structure can be provided by setting \code{LORstr=}"\code{fixed}". In this
#' case, the utility function \link{matrixLOR} is useful in constructing the
#' required \code{LORterm} argument.
#'
#' The function \link{waldts} provides a goodness-of-fit test between two
#' nested GEE models based on a Wald test statistic.
#'
#' @name multgee-package
#'
#' @aliases multgee
#'
#' @docType package
#'
#' @author Anestis Touloumis Maintainer: Anestis Touloumis
#' <A.Touloumis@@brighton.ac.uk>
#'
#' @references Becker, M. and Clogg, C. (1989) Analysis of sets of two-way
#' contingency tables using association models. \emph{Journal of the American
#' Statistical Association} \bold{84}, 142--151.
#'
#' Goodman, L. (1985) The analysis of cross-classified data having ordered
#' and/or unordered categories: Association models, correlation models, and
#' asymmetry models for contingency tables with or without missing entries.
#' \emph{The Annals of Statistics} \bold{13}, 10--69.
#'
#' Touloumis, A., Agresti, A. and Kateri, M. (2013) GEE for multinomial
#' responses using a local odds ratios parameterization. \emph{Biometrics}
#' \bold{69}, 633--640.
#'
#' Touloumis, A. (2015) R Package multgee: A Generalized Estimating Equations
#' Solver for Multinomial Responses. \emph{Journal of Statistical Software}
#' \bold{64}, 1--14.
#'
## usethis namespace: start
#' @useDynLib multgee, .registration = TRUE
## usethis namespace: end
NULL
#'
#' @import gnm
#' @importFrom stats coef deviance fitted glm make.link model.extract
#' @importFrom stats model.matrix model.response pchisq printCoefmat pnorm
#' @importFrom stats poisson qnorm reshape update vcov
#' @importFrom utils combn
#' @importFrom VGAM acat coefficients cumulative multinomial vglm
#'
## usethis namespace: start
#' @importFrom Rcpp sourceCpp
## usethis namespace: end
NULL
#'
#' @keywords package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.