R/multgee-package.R

#' A GEE Solver For Correlated Nominal Or Ordinal Multinomial Responses
#'
#' A generalized estimating equations (GEE) solver for fitting marginal
#' regression models with correlated nominal or ordinal multinomial responses
#' based on a local odds ratios parameterization for the association structure.
#'
#' The package contains two functions that fit GEE models for correlated
#' multinomial responses; \link{ordLORgee} for an ordinal response scale and
#' \link{nomLORgee} for a nominal response scale.
#'
#' The main arguments in both functions are: (i) an optional data frame
#' (\code{data}), (ii) a model formula (\code{formula}), (iii) a cluster
#' identifier variable (\code{id}) and (iv) an optional vector that identifies
#' the order of the observations within each cluster (\code{repeated}).
#'
#' Options for the marginal model in the function \link{ordLORgee} include
#' cumulative link models or an adjacent categories logit model. A marginal
#' baseline category logit model is offered in the function \link{nomLORgee}.
#' For the form of the linear predictor in these models, see the \code{Details}
#' sections in \link{nomLORgee} and \link{ordLORgee}.
#'
#' The association structure among the correlated multinomial responses is
#' expressed via marginalized local odds ratios (\cite{Touloumis et al.,
#' 2013}). The estimating procedure for the local odds ratios can be summarized
#' as follows: For each level pair of the \code{repeated} variable, the
#' available responses are aggregated across clusters to form a square
#' marginalized contingency table.  Treating these tables as independent, an
#' RC-G(1) type model (\cite{Becker and Clogg, 1989}) is fitted in order to
#' estimate the marginalized local odds ratios. The \code{LORstr} argument
#' determines the form of the marginalized local odds ratios structure. Since
#' the general RC-G(1) model is closely related to the family of association
#' models (\cite{Goodman, 1985}), one can instead fit an association model to
#' each of the marginalized contingency tables by setting \code{LORem="2way"}.
#'
#' If the underlying association pattern does not change dramatically across
#' the level pairs of \code{repeated} then parsimonious marginalized local odds
#' ratios should sufficiently approximate the true underlying association
#' structure. To assess the underlying association structure, one might use the
#' utility function \link{intrinsic.pars}.
#'
#' Instead of estimating the local odds ratios structure, a user-defined
#' structure can be provided by setting \code{LORstr=}"\code{fixed}". In this
#' case, the utility function \link{matrixLOR} is useful in constructing the
#' required \code{LORterm} argument.
#'
#' The function \link{waldts} provides a goodness-of-fit test between two
#' nested GEE models based on a Wald test statistic.
#'
#' @name multgee-package
#'
#' @aliases multgee
#'
#' @docType package
#'
#' @author Anestis Touloumis Maintainer: Anestis Touloumis
#' <A.Touloumis@@brighton.ac.uk>
#'
#' @references Becker, M. and Clogg, C. (1989) Analysis of sets of two-way
#' contingency tables using association models. \emph{Journal of the American
#' Statistical Association} \bold{84}, 142--151.
#'
#' Goodman, L. (1985) The analysis of cross-classified data having ordered
#' and/or unordered categories: Association models, correlation models, and
#' asymmetry models for contingency tables with or without missing entries.
#' \emph{The Annals of Statistics} \bold{13}, 10--69.
#'
#' Touloumis, A., Agresti, A. and Kateri, M. (2013) GEE for multinomial
#' responses using a local odds ratios parameterization. \emph{Biometrics}
#' \bold{69}, 633--640.
#'
#' Touloumis, A. (2015) R Package multgee: A Generalized Estimating Equations
#' Solver for Multinomial Responses. \emph{Journal of Statistical Software}
#' \bold{64}, 1--14.
#'
## usethis namespace: start
#' @useDynLib multgee, .registration = TRUE
## usethis namespace: end
NULL
#'
#' @import gnm
#' @importFrom stats coef deviance fitted glm make.link model.extract
#' @importFrom stats model.matrix model.response pchisq printCoefmat pnorm
#' @importFrom stats poisson qnorm reshape update vcov
#' @importFrom utils combn
#' @importFrom VGAM acat coefficients cumulative multinomial vglm
#'
## usethis namespace: start
#' @importFrom Rcpp sourceCpp
## usethis namespace: end
NULL
#'
#' @keywords package
NULL

Try the multgee package in your browser

Any scripts or data that you put into this service are public.

multgee documentation built on Sept. 2, 2023, 9:06 a.m.