README.md

multiDEGGs

Differentially Expressed Gene-Gene pairs in multi omic data

The multiDEGGs package test for differential gene-gene correlations across different groups of samples in multi omic data. Specific gene-gene interactions can be explored and gene-gene pair regression plots can be interactively shown.

Installation

Install from CRAN: install.packages("multiDEGGs")

Install from Github: devtools::install_github("elisabettasciacca/multiDEGGs")

Example

Load package and sample data library(multiDEGGs) data("synthetic_metadata") data("synthetic_rnaseqData") data("synthetic_proteomicData") data("synthetic_OlinkData")

Generate differential networks `assayData_list <- list("RNAseq" = synthetic_rnaseqData, "Proteomics" = synthetic_proteomicData, "Olink" = synthetic_OlinkData)

deggs_object <- get_diffNetworks(assayData = assayData_list, metadata = synthetic_metadata, category_variable = "response", regression_method = "lm", padj_method = "bonferroni", verbose = FALSE, show_progressBar = FALSE, cores = 2)`

Visualise interactively (will open a shiny interface) View_diffNetworks(deggs_object)

Get a table listing all the significant interactions found in each category get_multiOmics_diffNetworks(deggs_object, sig_threshold = 0.05)

Plot differential regression fits for a single interaction plot_regressions(deggs_object, assayDataName = "RNAseq", gene_A = "MTOR", gene_B = "AKT2", legend_position = "bottomright")

Citation

citation("multiDEGGs")


Try the multiDEGGs package in your browser

Any scripts or data that you put into this service are public.

multiDEGGs documentation built on June 8, 2025, 1:19 p.m.