Description Usage Arguments Value References Examples
multicmpests
computes the maximum likelihood estimates of a bivariate COM-Poisson distribution (based on the model described in Sellers et al. (2016)) for given count data and conducts a test for significant data dispersion, relative to a bivariate Poisson model.
The bivariate Poisson case is addressed via the bivpois package by Karlis and Ntzoufras (2009).
1 | multicmpests(data, max = 100, startvalues = NULL)
|
data |
A two-column dataset of counts. |
max |
Truncation term for infinite summation associated with the Z function. See Sellers et al. (2016) for details. |
startvalues |
A vector of starting values for maximum likelihood estimation. The values are read as follows: c(lambda, nu, p00, p10, p01, p11). The default is c(1,1, 0.25, 0.25, 0.25, 0.25). |
multicmpests
will return a list of four elements: $par (Parameter Estimates), $negll (Negative Log-Likelihood), $LRTbpd (Dispersion Test Statistic), and
$pbpd (Dispersion Test P-Value).
Sellers KF, Morris DS, Balakrishnan N (2016) Bivariate Conway-Maxwell-Poisson Distribution: Formulation, Properties, and Inference, Journal of Multivariate Analysis 150:152-168.
Karlis D., Ntzoufras I. (2009) bivpois: Bivariate Poisson Models Using the EM Algorithm, Version 0.50-3.1. http://cran.wustl.edu/web/packages/bivpois/index.html
1 2 3 4 5 6 | x1 <- c(3,2,5,4,1)
x2 <- c(0,4,1,0,1)
ex.data <- cbind(x1,x2)
# starting close to the optimum for sake of run time
multicmpests(ex.data, startvalues = c(12.5 , 1.7 , 0, 0.25, 0.75, 0))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.