Nothing
#' Returns probabilities of correct classification for both groups in independent data partition.
#'
#' @param data Data frame including predicted values (e.g., pred.dat from D_regularized_out).
#' @param pred.var Character string. Variable name for predicted values.
#' @param group.values Vector of length 2, group values (e.g. c("male", "female) or c(0,1)).
#' @param group.var The name of the group variable.
#'
#' @return Vector of length 2. Probabilities of correct classification.
#' @export
#'
#' @examples
#' D_out <- D_regularized(
#' data = iris[iris$Species == "versicolor" | iris$Species == "virginica", ],
#' mv.vars = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"),
#' group.var = "Species", group.values = c("versicolor", "virginica"),
#' out = TRUE,
#' size = 15
#' )
#'
#' pcc(
#' data = D_out$pred.dat,
#' pred.var = "pred",
#' group.var = "group",
#' group.values = c("versicolor", "virginica")
#' )
pcc <- function(data,
pred.var,
group.var,
group.values) {
pcc.1 <-
sum(data[data[, group.var] == group.values[1], pred.var] > 0) /
length(data[data[, group.var] == group.values[1], pred.var])
pcc.2 <- sum(data[data[, group.var] == group.values[2], pred.var] < 0) /
length(data[data[, group.var] == group.values[2], pred.var])
pcc.total <- (sum(data[data[, group.var] == group.values[1], pred.var] > 0) +
sum(data[data[, group.var] == group.values[2], pred.var] < 0)) /
nrow(data)
pcc.out <- cbind(
pcc.1,
pcc.2,
pcc.total
)
return(pcc.out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.