Description Usage Arguments Details Value Author(s) References See Also Examples
Return a multi-way cluster-robust variance-covariance matrix
1 2 3 |
model |
The estimated model, usually an |
cluster |
A |
parallel |
Scalar or list. If a list, use the list as a list of connected processing cores/clusters. A scalar indicates no parallelization. See the parallel package. |
use_white |
Logical or |
df_correction |
Logical or |
leverage |
Integer. EXPERIMENTAL Uses Mackinnon-White HC3-style leverage
adjustments. Known to work in the non-clustering case,
e.g., it reproduces HC3 if |
force_posdef |
Logical. Force the eigenvalues of the variance-covariance matrix to be positive. |
stata_fe_model_rank |
Logical. If |
debug |
Logical. Print internal values useful for debugging to the console. |
This function implements multi-way clustering using the method suggested by Cameron, Gelbach, & Miller (2011), which involves clustering on 2^D - 1 dimensional combinations, e.g., if we're cluster on firm and year, then we compute for firm, year, and firm-year. Variance-covariance matrices with an odd number of cluster variables are added, and those with an even number are subtracted.
The cluster variable(s) are specified by passing the entire variable(s)
to cluster (cbind()
'ed as necessary). The cluster variables should
be of the same number of rows as the original data set; observations
omitted or excluded in the model estimation will be handled accordingly.
Alternatively, you can use a formula to specify which variables from the
original data frame to use as cluster variables, e.g., ~ firmid + year
.
Ma (2014) suggests using the White (1980)
variance-covariance matrix as the final, subtracted matrix when the union
of the clustering dimensions U results in a single observation per group in U;
e.g., if clustering by firm and year, there is only one observation
per firm-year, we subtract the White (1980) HC0 variance-covariance
from the sum of the firm and year vcov matrices. This is detected
automatically (if use_white = NULL
), but you can force this one way
or the other by setting use_white = TRUE
or FALSE
.
Some authors suggest avoiding degrees of freedom corrections with
multi-way clustering. By default, the function uses corrections
identical to Petersen (2009) corrections. Passing a numerical
vector to df_correction
(of length 2^D - 1) will override
the default, and setting df_correction = FALSE
will use no correction.
Cameron, Gelbach, & Miller (2011)
futher suggest a method for forcing
the variance-covariance matrix to be positive semidefinite by correcting
the eigenvalues of the matrix. To use this method, set force_posdef = TRUE
.
Do not use this method unless absolutely necessary! The eigen/spectral
decomposition used is not ideal numerically, and may introduce small
errors or deviations. If force_posdef = TRUE
, the correction is applied
regardless of whether it's necessary.
The defaults deliberately match the Stata default output for one-way and Mitchell Petersen's two-way Stata code results. To match the SAS default output (obtained using the class & repeated subject statements, see Arellano, 1987) simply turn off the degrees of freedom correction.
Parallelization is available via the parallel package by passing
the "cluster" list (usually called cl
) to the parallel argument.
a K x K variance-covariance matrix of type 'matrix'
Nathaniel Graham npgraham1@gmail.com
Arellano, M. (1987). PRACTITIONERS' CORNER: Computing Robust Standard Errors for Within-groups Estimators. Oxford Bulletin of Economics and Statistics, 49(4), 431–434. doi: 10.1111/j.1468-0084.1987.mp49004006.x
Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29(2). doi: 10.1198/jbes.2010.07136
Ma, Mark (Shuai), Are We Really Doing What We Think We Are Doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors (April 9, 2014).
MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305–325. doi: 10.1016/0304-4076(85)90158-7
Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches. Review of Financial Studies, 22(1), 435–480. doi: 10.1093/rfs/hhn053
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society, 817–838. doi: 10.2307/1912934
The coeftest
and waldtest
functions
from lmtest provide hypothesis testing, sandwich provides other
variance-covariance matrices such as vcovHC
and vcovHAC
,
and the felm
function from lfe also implements multi-way standard
error clustering. The cluster.boot
function provides clustering using the bootstrap.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | library(lmtest)
data(petersen)
m1 <- lm(y ~ x, data = petersen)
# Cluster by firm
vcov_firm <- cluster.vcov(m1, petersen$firmid)
coeftest(m1, vcov_firm)
# Cluster by year
vcov_year <- cluster.vcov(m1, petersen$year)
coeftest(m1, vcov_year)
# Cluster by year using a formula
vcov_year_formula <- cluster.vcov(m1, ~ year)
coeftest(m1, vcov_year_formula)
# Double cluster by firm and year
vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year))
coeftest(m1, vcov_both)
# Double cluster by firm and year using a formula
vcov_both_formula <- cluster.vcov(m1, ~ firmid + year)
coeftest(m1, vcov_both_formula)
# Replicate Mahmood Arai's double cluster by firm and year
vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), use_white = FALSE)
coeftest(m1, vcov_both)
# For comparison, produce White HC0 VCOV the hard way
vcov_hc0 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE)
coeftest(m1, vcov_hc0)
# Produce White HC1 VCOV the hard way
vcov_hc1 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = TRUE)
coeftest(m1, vcov_hc1)
# Produce White HC2 VCOV the hard way
vcov_hc2 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 2)
coeftest(m1, vcov_hc2)
# Produce White HC3 VCOV the hard way
vcov_hc3 <- cluster.vcov(m1, 1:nrow(petersen), df_correction = FALSE, leverage = 3)
coeftest(m1, vcov_hc3)
# Go multicore using the parallel package
## Not run:
library(parallel)
cl <- makeCluster(4)
vcov_both <- cluster.vcov(m1, cbind(petersen$firmid, petersen$year), parallel = cl)
stopCluster(cl)
coeftest(m1, vcov_both)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.