Nothing
      # ParGateAdjP function computes adjusted p-values and generates decision rules
# for multistage parallel gatekeeping procedures in hypothesis testing problems
# with multiple families of null hypotheses (null hypotheses are assumed
# to be equally weighted within each family)
pargateadjp<-function(gateproc, independence, alpha=0.05, printDecisionRules=FALSE)
# GATEPROC, List of gatekeeping procedure parameters
# INDEPENDENCE, Boolean indicator (TRUE, Independence condition is imposed; FALSE,
# Independence condition is not imposed)
# ALPHA: Global familywise error rate
# PRINTDECISIONRULES: Boolean indicator which controls printing of decision rules
{
	# Number of families
	nfams<-length(gateproc)
	if (nfams<=1) stop("Function requires more than one family of null hypotheses")
	for (i in 1:nfams)
	{
		pr<-gateproc[[i]]$proc
		if (pr!="Bonferroni" & pr!="Holm" & pr!="Hommel" & pr!="Hochberg" & pr!="Fallback")
			stop("Procedure name is not recognized. ParGateAdjP function supports only the Bonferroni, Holm, Hommel, Hochberg and fallback procedures")
	}
	if (alpha <= 0) stop("Alpha must be positive")
	if (alpha >= 1) stop("Alpha must be less than 1")
	temp<-gateproc
	for (i in 1:nfams)
	{
		# Number of null hypotheses
		nhyps<-length(temp[[i]]$rawp)
		adjp<-rep(0,nhyps)
		# Placeholder for adjusted p-values
		gateproc[[i]][5]<-list(adjp=adjp)
		for (j in 1:nhyps)
		{
			# Find the lowest alpha level at which the current null hypothesis is rejected
			upper<-1
			lower<-0
			for (k in 1:20)
			{
				current<-(lower+upper)/2
				# Evaluate decision rules for the multistage parallel gatekeeping procedure
				res<-pargateeval(temp,current,independence)
				# Rejection decision for the current null hypothesis
				if (independence==TRUE | i==nfams) reject<-res[[i]][[7]][j]
				# Rejection decisions after retesting if the independence condition is not imposed
				if (independence==FALSE & i<nfams)
				{
					# If the current null hypothesis was retested
					if (res[[2*nfams-i]][[6]]>0) reject<-res[[2*nfams-i]][[7]][j] else reject<-res[[i]][[7]][j]
				}
				# Update the interval
				if (reject==TRUE) upper<-current
				if (reject==FALSE) lower<-current
			}
			# Global adjusted p-value
			gateproc[[i]][[5]][j]<-(lower+upper)/2
		}
	}
	# Build a data frame with the raw and global adjusted p-values
	count<-0
	for (i in 1:nfams) {
		count<-count+length(gateproc[[i]]$rawp)
	}
        result <- data.frame()
	k<-1
	for (i in 1:nfams)
	{
		# Number of null hypotheses
		nhyps<-length(gateproc[[i]]$rawp)
		for (j in 1:nhyps)
		{
			result[k,1]<-gateproc[[i]]$label
			result[k,2]<-gateproc[[i]]$proc
			result[k,3]<-gateproc[[i]]$procpar
			result[k,4]<-round(gateproc[[i]]$rawp[j], 4)
			result[k,5]<-round(gateproc[[i]][[5]][j], 4)
			k<-k+1
		}
	}
	names(result)[1]<-"Family"
	names(result)[2]<-"Procedure"
	names(result)[3]<-"Parameter"
	names(result)[4]<-"Raw.pvalue"
	names(result)[5]<-"Adj.pvalue"
	if(printDecisionRules==TRUE) { pargaterule(gateproc,alpha,independence)}
	return(result=result)
}
# End of pargateadjp
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.