# plot.gaussian_naive_bayes: Plot Method for gaussian_naive_bayes Objects In naivebayes: High Performance Implementation of the Naive Bayes Algorithm

 plot.gaussian_naive_bayes R Documentation

## Plot Method for gaussian_naive_bayes Objects

### Description

Plot method for objects of class `"gaussian_naive_bayes"` designed for a quick look at the class marginal or conditional Gaussian distributions of metric predictors.

### Usage

``````## S3 method for class 'gaussian_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
legend.box = FALSE, arg.num = list(),
prob = c("marginal", "conditional"), ...)
``````

### Arguments

 `x` object of class inheriting from `"gaussian_naive_bayes"`. `which` variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables. `ask` logical; if `TRUE`, the user is asked before each plot, see `par(ask=.)`. `legend` logical; if `TRUE` a `legend` will be be plotted. `legend.box` logical; if `TRUE` a box will be drawn around the legend. `arg.num` other parameters to be passed as a named list to `matplot`. `prob` character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal". `...` not used.

### Details

Class marginal and class conditional Gaussian distributions are visualised by `matplot`.

The parameter `prob` controls the kind of probabilities to be visualized for each individual predictor `Xi`. It can take on two values:

• "marginal": `P(Xi|class) * P(class)`

• "conditional": `P(Xi|class)`

### Author(s)

Michal Majka, michalmajka@hotmail.com

`naive_bayes`, `gaussian_naive_bayes`, `predict.gaussian_naive_bayes`, `tables`, `get_cond_dist`

### Examples

``````data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])

### Train the Gaussian Naive Bayes with custom prior
gnb <- gaussian_naive_bayes(x = M, y = y, prior = c(0.1,0.3,0.6))

# Visualize class marginal Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1)

# Visualize class conditional Gaussian distributions corresponding
# to the first feature
plot(gnb, which = 1, prob = "conditional")
``````

naivebayes documentation built on June 25, 2024, 1:16 a.m.