View source: R/bernoulli_naive_bayes.R
| plot.bernoulli_naive_bayes | R Documentation |
Plot method for objects of class "bernoulli_naive_bayes" designed for a quick look at the class marginal distributions or class conditional distributions of 0-1 valued predictors.
## S3 method for class 'bernoulli_naive_bayes'
plot(x, which = NULL, ask = FALSE, arg.cat = list(),
prob = c("marginal", "conditional"), ...)
x |
object of class inheriting from |
which |
variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables. |
ask |
logical; if |
arg.cat |
other parameters to be passed as a named list to |
prob |
character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal". |
... |
not used. |
Class conditional or class conditional distributions are visualised by mosaicplot.
The parameter prob controls the kind of probabilities to be visualized for each individual predictor Xi. It can take on two values:
"marginal": P(Xi|class) * P(class)
"conditional": P(Xi|class)
Michal Majka, michalmajka@hotmail.com
naive_bayes,bernoulli_naive_bayes predict.bernoulli_naive_bayes, tables, get_cond_dist
# Simulate data
cols <- 10 ; rows <- 100 ; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5
# Train the Bernoulli Naive Bayes model
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)
# Visualize class marginal probabilities corresponding to the first feature
plot(bnb, which = 1)
# Visualize class conditional probabilities corresponding to the first feature
plot(bnb, which = 1, prob = "conditional")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.