Nothing
bernoulli_naive_bayes <- function (x, y, prior = NULL, laplace = 0, ...) {
if (!is.factor(y) & !is.character(y) & !is.logical(y))
stop("bernoulli_naive_bayes(): y must be either a factor or character or logical vector", call. = FALSE)
if (!is.factor(y))
y <- factor(y)
levels <- levels(y)
nlev <- nlevels(y)
vars <- colnames(x)
class_x <- class(x)[1]
use_Matrix <- class_x %in% .matrix_classes
if (!is.matrix(x) & !use_Matrix) {
warning("bernoulli_naive_bayes(): x was coerced to matrix.", call. = FALSE)
x <- as.matrix(x)
if (mode(x) != "numeric")
stop("bernoulli_naive_bayes(): x must be a matrix/dgCMatrix with with numeric {0,1} columns.", call. = FALSE)
}
if (use_Matrix) {
if (!"Matrix" %in% rownames(utils::installed.packages()))
stop("bernoulli_naive_bayes(): please install \"Matrix\" package.")
if (class_x != "dgCMatrix")
stop("bernoulli_naive_bayes(): dgCMatrix class from the Matrix package is only supported.", call. = FALSE)
}
if (nlev < 2)
stop("bernoulli_naive_bayes(): y must contain at least two classes. ", call. = FALSE)
if (is.null(vars))
stop("bernoulli_naive_bayes(): x must have unique column names.\n", call. = FALSE)
NAy <- anyNA(y)
NAx <- anyNA(x)
if (NAy) {
na_y_bool <- is.na(y)
len_na <- sum(na_y_bool)
warning(paste0("bernoulli_naive_bayes(): y contains ", len_na, " missing",
ifelse(len_na == 1, " value", " values"), ". ",
ifelse(len_na == 1, "It is", "They are"),
" not included (also the corresponding rows in x) ",
"into the estimation process."), call. = FALSE)
y <- y[!na_y_bool]
x <- x[!na_y_bool, ]
}
if (NAx) {
na_x <- is.na(x) * 1
len_nax <- sum(na_x)
warning(paste0("bernoulli_naive_bayes(): x contains ", len_nax, " missing",
ifelse(len_nax == 1, " value", " values"), ". ",
ifelse(len_nax == 1, "It is", "They are"),
" not included into the estimation process."), call. = FALSE)
}
y_counts <- stats::setNames(tabulate(y), levels)
y_min <- y_counts < 1
if (any(y_min))
stop(paste0("bernoulli_naive_bayes(): y variable must contain at least ",
"one observation per class for estimation process.",
" Class ", paste0(levels[y_min], collapse = ", "),
" has less than 1 observation."), call. = FALSE)
if (is.null(prior)) {
prior <- prop.table(y_counts)
} else {
if (length(prior) != nlev)
stop(paste0("bernoulli_naive_bayes(): vector with prior probabilities must have ",
nlev, " entries"))
prior <- stats::setNames(prior / sum(prior), levels)
}
if (!NAx) {
prob1 <- if (use_Matrix) {
params <- lapply(levels, function(lev) {
Matrix::colSums(x[y == lev, , drop = FALSE], na.rm = TRUE) + laplace })
params <- do.call("rbind", params)
t(params / (y_counts + laplace * 2))
} else {
t((rowsum.default(x, y, na.rm = TRUE) + laplace) / (y_counts + laplace * 2))
}
} else {
n <- if (use_Matrix) {
na_per_feature <- lapply(levels, function(lev) {
Matrix::colSums(na_x[y == lev, , drop = FALSE], na.rm = TRUE) })
n_feature_obs <- y_counts - do.call("rbind", na_per_feature)
rownames(n_feature_obs) <- levels
n_feature_obs
} else {
y_counts - rowsum.default(na_x, y)
}
if (any(n == 0)) {
warning(paste0("bernoulli_naive_bayes(): x should contain at least one ",
"non-missing observation per class for parameter estimation purposes."), call. = FALSE)
}
prob1 <- if (use_Matrix) {
params <- lapply(levels, function(lev) {
Matrix::colSums(x[y == lev, , drop = FALSE], na.rm = TRUE) + laplace })
params <- do.call("rbind", params)
t(params / (n + laplace * 2))
} else {
t((rowsum.default(x, y, na.rm = TRUE) + laplace) / (n + laplace * 2))
}
}
if (any(prob1 == 0)) {
nempty <- length(which(prob1 == 0, arr.ind = TRUE)[ ,1])
warning(paste0("bernoulli_naive_bayes(): there ", ifelse(nempty == 1, "is ", "are "),
nempty, " empty ", ifelse(nempty == 1, "cell ", "cells "),
"leading to zero estimates. Consider Laplace smoothing."), call. = FALSE)
}
structure(list(data = list(x = x, y = y), levels = levels,
laplace = laplace, prob1 = prob1, prior = prior,
call = match.call()), class = "bernoulli_naive_bayes")
}
predict.bernoulli_naive_bayes <- function(object, newdata = NULL, type = c("class", "prob"), ...) {
if (is.null(newdata))
newdata <- object$data$x
class_x <- class(newdata)[1]
use_Matrix <- class_x == "dgCMatrix"
if (!is.matrix(newdata) & !use_Matrix)
stop("predict.bernoulli_naive_bayes(): newdata must be numeric matrix or dgCMatrix (Matrix package) with at least one row and two named columns.", call. = FALSE)
if (is.matrix(newdata) & mode(newdata) != "numeric")
stop("predict.bernoulli_naive_bayes(): newdata must be a numeric matrix.", call. = FALSE)
if (use_Matrix & !"Matrix" %in% rownames(utils::installed.packages()))
stop("predict.bernoulli_naive_bayes(): please install Matrix package", call. = FALSE)
type <- match.arg(type)
lev <- object$levels
n_lev <- length(lev)
n_obs <- dim(newdata)[1L]
prior <- object$prior
prob1 <- t(object$prob1)
features <- colnames(newdata)[colnames(newdata) %in% colnames(prob1)]
n_tables <- ncol(prob1)
prob1 <- prob1[ ,features, drop = FALSE]
n_features <- length(features)
n_features_newdata <- ncol(newdata)
if (n_features == 0) {
warning(paste0("predict.bernoulli_naive_bayes(): no feature in newdata corresponds to ",
"features defined in the object. Classification is based on prior probabilities."), call. = FALSE)
if (type == "class") {
return(factor(rep(lev[which.max(prior)], n_obs), levels = lev))
} else {
return(matrix(prior, ncol = n_lev, nrow = n_obs, byrow = TRUE, dimnames = list(NULL, lev)))
}
}
if (n_features < n_tables) {
warning(paste0("predict.bernoulli_naive_bayes(): only ", n_features, " feature(s) in newdata could be matched ",
"with ", n_tables, " feature(s) defined in the object."), call. = FALSE)
}
if (n_features_newdata > n_features) {
warning(paste0("predict.bernoulli_naive_bayes(): newdata contains feature(s) that could not be matched ",
"with (", n_features, ") feature(s) defined in the object. Only matching features are used for calculation."), call. = FALSE)
newdata <- newdata[ ,features, drop = FALSE]
}
if (object$laplace == 0) {
threshold <- 0.001
eps <- 0
prob1[prob1 <= eps] <- threshold
prob1[prob1 >= (1 - eps)] <- 1 - threshold
}
lprob1 <- log(prob1)
lprob0 <- log(1 - prob1)
NAs <- anyNA(newdata)
if (NAs) {
ind_na <- if (use_Matrix) Matrix::which(is.na(newdata), arr.ind = TRUE) else which(is.na(newdata), arr.ind = TRUE)
len_na <- nrow(ind_na)
warning(paste0("predict.bernoulli_naive_bayes(): ", len_na, " missing", ifelse(len_na == 1, " value", " values"),
" discovered in the newdata. ", ifelse(len_na == 1, "It is", "They are"), " not included in calculation."), call. = FALSE)
ind_obs <- ind_na[ ,1]
ind_var <- ind_na[ ,2]
newdata[ind_na] <- 1
neutral <- do.call(rbind, tapply(ind_var, ind_obs, function(x) rowSums(lprob1[ ,x, drop = FALSE])))
ind_obs <- sort(unique(ind_obs))
}
if (use_Matrix) {
post <- Matrix::tcrossprod(newdata, lprob1) + matrix(rowSums(lprob0), n_obs, n_lev, TRUE) - Matrix::tcrossprod(newdata, lprob0)
} else {
post <- tcrossprod(newdata, lprob1) + matrix(rowSums(lprob0), n_obs, n_lev, TRUE) - tcrossprod(newdata, lprob0)
}
if (NAs) {
post[ind_obs, ] <- post[ind_obs, ] - neutral
}
for (ith_class in seq_along(prior)) {
post[ ,ith_class] <- post[ ,ith_class] + log(prior[ith_class])
}
if (type == "class") {
if (n_obs == 1) {
return(factor(lev[which.max(post)], levels = lev))
} else {
return(factor(lev[max.col(post, "first")], levels = lev))
}
}
else {
if (n_obs == 1) {
post <- t(as.matrix(apply(post, 2, function(x) { 1 / sum(exp(post - x)) })))
colnames(post) <- lev
return(post)
}
else {
return(apply(post, 2, function(x) { 1 / if (use_Matrix) Matrix::rowSums(exp(post - x)) else rowSums(exp(post - x)) }))
}
}
}
print.bernoulli_naive_bayes <- function (x, ...) {
model <- "Bernoulli Naive Bayes"
n_char <- getOption("width") - 3
str_left_right <- paste0(rep("=", ceiling((n_char - nchar(model)) / 2)),
collapse = "")
str_full <- paste0(str_left_right, " ", model, " ",
ifelse(n_char %% 2 != 0, "=", ""), str_left_right)
len <- nchar(str_full)
l <- paste0(rep("-", len), collapse = "")
cat("\n")
cat(str_full, "\n", "\n", "Call:", "\n", sep = "")
print(x$call)
cat("\n")
cat(l, "\n", "\n")
cat("Laplace smoothing:", x$laplace)
cat("\n")
cat("\n")
cat(l, "\n", "\n")
cat("A priori probabilities:", "\n")
print(x$prior)
cat("\n")
cat(l, "\n", "\n")
cat("Tables:", "\n")
tabs <- get_tables(x)
n <- length(tabs)
indices <- seq_len(min(5,n))
tabs <- tabs[indices]
print(tabs)
if (n > 5) {
cat("\n\n")
cat("# ... and", n - 5, ifelse(n - 5 == 1, "more table\n\n", "more tables\n\n"))
cat(l)
}
cat("\n\n")
}
plot.bernoulli_naive_bayes <- function(x, which = NULL, ask = FALSE,
arg.cat = list(),
prob = c("marginal", "conditional"), ...) {
prob <- match.arg(prob)
model <- "bernoulli_naive_bayes"
if (!class(x) %in% model)
stop(paste0("plot.bernoulli_naive_bayes(): x must be of class ",
model), call. = FALSE)
tables <- get_bernoulli_tables(x$prob1)
vars <- names(tables)
prior <- x$prior
if (is.null(x$data))
stop("plot.bernoulli_naive_bayes(): object does not contain data.", call. = FALSE)
if (is.character(which) && !all(which %in% vars))
stop("plot.bernoulli_naive_bayes(): at least one variable is not available.", call. = FALSE)
if (length(which) > length(vars))
stop("plot.bernoulli_naive_bayes(): too many variables selected", call. = FALSE)
if (!is.null(which) && !is.character(which) && !is.numeric(which))
stop("plot.bernoulli_naive_bayes(): which must be either character or numeric vector.", call. = FALSE)
if (length(list(...)) > 0)
warning("plot.bernoulli_naive_bayes(): please specify additional parameters using arg.cat parameter", call. = FALSE)
if (is.null(which))
which <- seq_along(vars)
if (is.numeric(which))
v <- vars[which]
if (is.character(which))
v <- vars[vars %in% which]
opar <- graphics::par()$ask
graphics::par(ask = ask)
on.exit(graphics::par(ask = opar))
for (i in v) {
i_tab <- tables[[i]]
lev <- x$levels
if (!("main" %in% names(arg.cat))) arg.cat$main <- ""
if (!("color" %in% names(arg.cat))) arg.cat$color <- c("red", "yellow")
arg.cat$ylab <- i
if (prob == "marginal") {
for (ith_class in 1:length(prior))
i_tab[ ,ith_class] <- i_tab[ ,ith_class] * prior[ith_class]
}
params <- c(list(x = quote(t(i_tab))), c(arg.cat))
do.call("mosaicplot", params)
}
invisible()
}
coef.bernoulli_naive_bayes <- function(object, ...) {
prob1 <- object$prob1
levels <- object$levels
nlev <- length(levels)
m <- cbind(1 - prob1, prob1)
ind <- rep(seq_len(nlev), each = 2)
m <- m[ ,ifelse(seq_along(ind) %% 2 != 0, ind, ind + nlev)]
colnames(m) <- (paste0(rep(levels, each = 2), ":", c("0", "1")))
as.data.frame(m)
}
summary.bernoulli_naive_bayes <- function(object, ...) {
model <- "Bernoulli Naive Bayes"
n_char <- getOption("width") - 3
str_left_right <- paste0(rep("=", ceiling((n_char - nchar(model)) / 2)),
collapse = "")
str_full <- paste0(str_left_right, " ", model, " ",
ifelse(n_char %% 2 != 0, "=", ""), str_left_right)
len <- nchar(str_full)
l <- paste0(rep("-", len), collapse = "")
cat("\n")
cat(str_full, "\n", "\n")
cat("- Call:", deparse(object$call), "\n")
cat("- Laplace:", object$laplace, "\n")
cat("- Classes:", nlevels(object$data$y), "\n")
cat("- Samples:", length(object$data$y), "\n")
cat("- Features:", nrow(object$prob1), "\n")
cat("- Prior probabilities: \n")
cat(" -", paste0(names(object$prior), ": ", round(object$prior, 4), collapse = "\n - "))
cat("\n\n")
cat(l, "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.